ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemex Unicode version

Theorem bezoutlemex 11678
Description: Lemma for Bézout's identity. Existence of a number which we will later show to be the greater common divisor and its decomposition into cofactors. (Contributed by Mario Carneiro and Jim Kingdon, 3-Jan-2022.)
Assertion
Ref Expression
bezoutlemex  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Distinct variable groups:    A, d, x, y    z, A, d    B, d, x, y    z, B

Proof of Theorem bezoutlemex
Dummy variables  a  b  s  t  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5775 . . . . . . . 8  |-  ( y  =  t  ->  ( B  x.  y )  =  ( B  x.  t ) )
21oveq2d 5783 . . . . . . 7  |-  ( y  =  t  ->  (
( A  x.  x
)  +  ( B  x.  y ) )  =  ( ( A  x.  x )  +  ( B  x.  t
) ) )
32eqeq2d 2149 . . . . . 6  |-  ( y  =  t  ->  (
d  =  ( ( A  x.  x )  +  ( B  x.  y ) )  <->  d  =  ( ( A  x.  x )  +  ( B  x.  t ) ) ) )
43cbvrexv 2653 . . . . 5  |-  ( E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  <->  E. t  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  t ) ) )
54rexbii 2440 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  <->  E. x  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  t ) ) )
6 oveq2 5775 . . . . . . . 8  |-  ( x  =  s  ->  ( A  x.  x )  =  ( A  x.  s ) )
76oveq1d 5782 . . . . . . 7  |-  ( x  =  s  ->  (
( A  x.  x
)  +  ( B  x.  t ) )  =  ( ( A  x.  s )  +  ( B  x.  t
) ) )
87eqeq2d 2149 . . . . . 6  |-  ( x  =  s  ->  (
d  =  ( ( A  x.  x )  +  ( B  x.  t ) )  <->  d  =  ( ( A  x.  s )  +  ( B  x.  t ) ) ) )
98rexbidv 2436 . . . . 5  |-  ( x  =  s  ->  ( E. t  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  t ) )  <->  E. t  e.  ZZ  d  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) ) )
109cbvrexv 2653 . . . 4  |-  ( E. x  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  t
) )  <->  E. s  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) )
115, 10bitri 183 . . 3  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  <->  E. s  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) )
12 simpl 108 . . 3  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  A  e.  NN0 )
13 simpr 109 . . 3  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  B  e.  NN0 )
1411, 12, 13bezoutlemb 11677 . 2  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  [. B  /  d ]. E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) )
15 dfsbcq2 2907 . . . 4  |-  ( b  =  B  ->  ( [ b  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  <->  [. B  / 
d ]. E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
16 breq2 3928 . . . . . . . . 9  |-  ( b  =  B  ->  (
z  ||  b  <->  z  ||  B ) )
1716anbi2d 459 . . . . . . . 8  |-  ( b  =  B  ->  (
( z  ||  A  /\  z  ||  b )  <-> 
( z  ||  A  /\  z  ||  B ) ) )
1817imbi2d 229 . . . . . . 7  |-  ( b  =  B  ->  (
( z  ||  d  ->  ( z  ||  A  /\  z  ||  b ) )  <->  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) ) ) )
1918ralbidv 2435 . . . . . 6  |-  ( b  =  B  ->  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b ) )  <->  A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) ) ) )
2019anbi1d 460 . . . . 5  |-  ( b  =  B  ->  (
( A. z  e. 
NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
2120rexbidv 2436 . . . 4  |-  ( b  =  B  ->  ( E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
2215, 21imbi12d 233 . . 3  |-  ( b  =  B  ->  (
( [ b  / 
d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )  <->  ( [. B  /  d ]. E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) ) )
2311, 12, 13bezoutlema 11676 . . . 4  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  [. A  /  d ]. E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) ) )
24 dfsbcq2 2907 . . . . . 6  |-  ( a  =  A  ->  ( [ a  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  <->  [. A  / 
d ]. E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
25 breq2 3928 . . . . . . . . . . . . 13  |-  ( a  =  A  ->  (
z  ||  a  <->  z  ||  A ) )
2625anbi1d 460 . . . . . . . . . . . 12  |-  ( a  =  A  ->  (
( z  ||  a  /\  z  ||  b )  <-> 
( z  ||  A  /\  z  ||  b ) ) )
2726imbi2d 229 . . . . . . . . . . 11  |-  ( a  =  A  ->  (
( z  ||  d  ->  ( z  ||  a  /\  z  ||  b ) )  <->  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b
) ) ) )
2827ralbidv 2435 . . . . . . . . . 10  |-  ( a  =  A  ->  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  a  /\  z  ||  b ) )  <->  A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b ) ) ) )
2928anbi1d 460 . . . . . . . . 9  |-  ( a  =  A  ->  (
( A. z  e. 
NN0  ( z  ||  d  ->  ( z  ||  a  /\  z  ||  b
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
3029rexbidv 2436 . . . . . . . 8  |-  ( a  =  A  ->  ( E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  a  /\  z  ||  b ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) )  <->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
3130imbi2d 229 . . . . . . 7  |-  ( a  =  A  ->  (
( [ b  / 
d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  a  /\  z  ||  b ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )  <->  ( [
b  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) ) )
3231ralbidv 2435 . . . . . 6  |-  ( a  =  A  ->  ( A. b  e.  NN0  ( [ b  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  a  /\  z  ||  b
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )  <->  A. b  e.  NN0  ( [ b  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) ) )
3324, 32imbi12d 233 . . . . 5  |-  ( a  =  A  ->  (
( [ a  / 
d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  ->  A. b  e.  NN0  ( [ b  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  a  /\  z  ||  b
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )  <->  ( [. A  /  d ]. E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  ->  A. b  e.  NN0  ( [ b  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) ) ) )
34 breq1 3927 . . . . . . . 8  |-  ( z  =  w  ->  (
z  ||  d  <->  w  ||  d
) )
35 breq1 3927 . . . . . . . . 9  |-  ( z  =  w  ->  (
z  ||  a  <->  w  ||  a
) )
36 breq1 3927 . . . . . . . . 9  |-  ( z  =  w  ->  (
z  ||  b  <->  w  ||  b
) )
3735, 36anbi12d 464 . . . . . . . 8  |-  ( z  =  w  ->  (
( z  ||  a  /\  z  ||  b )  <-> 
( w  ||  a  /\  w  ||  b ) ) )
3834, 37imbi12d 233 . . . . . . 7  |-  ( z  =  w  ->  (
( z  ||  d  ->  ( z  ||  a  /\  z  ||  b ) )  <->  ( w  ||  d  ->  ( w  ||  a  /\  w  ||  b
) ) ) )
3938cbvralv 2652 . . . . . 6  |-  ( A. z  e.  NN0  ( z 
||  d  ->  (
z  ||  a  /\  z  ||  b ) )  <->  A. w  e.  NN0  ( w  ||  d  -> 
( w  ||  a  /\  w  ||  b ) ) )
4011, 39, 12, 13bezoutlemmain 11675 . . . . 5  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  A. a  e.  NN0  ( [ a  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  A. b  e.  NN0  ( [ b  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  a  /\  z  ||  b ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) ) )
4133, 40, 12rspcdva 2789 . . . 4  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( [. A  /  d ]. E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  A. b  e.  NN0  ( [ b  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) ) )
4223, 41mpd 13 . . 3  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  A. b  e.  NN0  ( [ b  /  d ] E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  b
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
4322, 42, 13rspcdva 2789 . 2  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
( [. B  /  d ]. E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x )  +  ( B  x.  y
) )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B
) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) ) )
4414, 43mpd 13 1  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  E. d  e.  NN0  ( A. z  e.  NN0  ( z  ||  d  ->  ( z  ||  A  /\  z  ||  B ) )  /\  E. x  e.  ZZ  E. y  e.  ZZ  d  =  ( ( A  x.  x
)  +  ( B  x.  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   [wsb 1735   A.wral 2414   E.wrex 2415   [.wsbc 2904   class class class wbr 3924  (class class class)co 5767    + caddc 7616    x. cmul 7618   NN0cn0 8970   ZZcz 9047    || cdvds 11482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-fz 9784  df-fl 10036  df-mod 10089  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-dvds 11483
This theorem is referenced by:  bezoutlemzz  11679
  Copyright terms: Public domain W3C validator