ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biadan2 Unicode version

Theorem biadan2 444
Description: Add a conjunction to an equivalence. (Contributed by Jeff Madsen, 20-Jun-2011.)
Hypotheses
Ref Expression
biadan2.1  |-  ( ph  ->  ps )
biadan2.2  |-  ( ps 
->  ( ph  <->  ch )
)
Assertion
Ref Expression
biadan2  |-  ( ph  <->  ( ps  /\  ch )
)

Proof of Theorem biadan2
StepHypRef Expression
1 biadan2.1 . . 3  |-  ( ph  ->  ps )
21pm4.71ri 384 . 2  |-  ( ph  <->  ( ps  /\  ph )
)
3 biadan2.2 . . 3  |-  ( ps 
->  ( ph  <->  ch )
)
43pm5.32i 442 . 2  |-  ( ( ps  /\  ph )  <->  ( ps  /\  ch )
)
52, 4bitri 182 1  |-  ( ph  <->  ( ps  /\  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  elab4g  2743  brab2a  4419  brab2ga  4441  elovmpt2  5732  eqop2  5835  elnnnn0  8398  elixx3g  9000  elfzo2  9237  1nprm  10640
  Copyright terms: Public domain W3C validator