![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biantrurd | Unicode version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 1-May-1995.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
biantrud.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
biantrurd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantrud.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ibar 295 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: 3anibar 1107 drex1 1720 elrab3t 2749 bnd2 3955 opbrop 4445 opelresi 4651 funcnv3 4992 fnssresb 5042 dff1o5 5166 fneqeql2 5308 fnniniseg2 5322 rexsupp 5323 dffo3 5346 fmptco 5362 fnressn 5381 fconst4m 5413 riota2df 5519 eloprabga 5622 frecabcl 6048 enq0breq 6688 genpassl 6776 genpassu 6777 elnnnn0 8398 peano2z 8468 znnsub 8483 znn0sub 8497 uzin 8732 nn01to3 8783 rpnegap 8847 divelunit 9100 elfz5 9113 uzsplit 9185 elfzonelfzo 9316 adddivflid 9374 divfl0 9378 2shfti 9857 rexuz3 10014 clim2c 10261 infssuzex 10489 bezoutlemmain 10531 |
Copyright terms: Public domain | W3C validator |