![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bicom | Unicode version |
Description: Commutative law for equivalence. Theorem *4.21 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 11-Nov-2012.) |
Ref | Expression |
---|---|
bicom |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom1 129 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | bicom1 129 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | impbii 124 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: bicomd 139 bibi1i 226 bibi1d 231 ibibr 244 bibif 647 con2bidc 803 con2biddc 808 pm5.17dc 844 bigolden 897 nbbndc 1326 bilukdc 1328 falbitru 1349 3impexpbicom 1368 exists1 2039 eqcom 2085 abeq1 2192 necon2abiddc 2315 necon2bbiddc 2316 necon4bbiddc 2323 ssequn1 3152 axpow3 3971 isocnv 5502 bezoutlemle 10604 |
Copyright terms: Public domain | W3C validator |