![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bicomi | Unicode version |
Description: Inference from commutative law for logical equivalence. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 16-Sep-2013.) |
Ref | Expression |
---|---|
bicomi.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bicomi |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicomi.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | bicom1 129 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: biimpri 131 bitr2i 183 bitr3i 184 bitr4i 185 syl5bbr 192 syl5rbbr 193 syl6bbr 196 syl6rbbr 197 pm5.41 249 anidm 388 pm4.87 524 anabs1 537 anabs7 539 pm4.76 569 mtbir 629 sylnibr 635 sylnbir 637 xchnxbir 639 xchbinxr 641 nbn 648 pm4.25 708 pm4.77 746 pm4.56 840 pm3.2an3 1118 syl3anbr 1214 3an6 1254 truan 1302 truimfal 1342 nottru 1345 sbid 1698 cleljust 1855 sb10f 1913 necon3bbii 2283 rspc2gv 2713 alexeq 2722 ceqsrexbv 2727 clel2 2729 clel4 2732 dfsbcq2 2819 cbvreucsf 2967 raldifb 3113 difab 3240 un0 3285 in0 3286 ss0b 3290 iindif2m 3753 epse 4105 uniuni 4209 cotr 4736 issref 4737 mptpreima 4844 ralrnmpt 5341 rexrnmpt 5342 eroveu 6263 bdeq 10772 bd0r 10774 bdcriota 10832 bj-d0clsepcl 10878 bj-dfom 10886 |
Copyright terms: Public domain | W3C validator |