ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biimp3ar Unicode version

Theorem biimp3ar 1252
Description: Infer implication from a logical equivalence. Similar to biimpar 285. (Contributed by NM, 2-Jan-2009.)
Hypothesis
Ref Expression
biimp3a.1  |-  ( (
ph  /\  ps )  ->  ( ch  <->  th )
)
Assertion
Ref Expression
biimp3ar  |-  ( (
ph  /\  ps  /\  th )  ->  ch )

Proof of Theorem biimp3ar
StepHypRef Expression
1 biimp3a.1 . . 3  |-  ( (
ph  /\  ps )  ->  ( ch  <->  th )
)
21exbiri 368 . 2  |-  ( ph  ->  ( ps  ->  ( th  ->  ch ) ) )
323imp 1109 1  |-  ( (
ph  /\  ps  /\  th )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    /\ w3a 896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105
This theorem depends on definitions:  df-bi 114  df-3an 898
This theorem is referenced by:  rmoi  2879  brelrng  4593  ssfzo12  9182  abssubge0  9929
  Copyright terms: Public domain W3C validator