![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr2d | Unicode version |
Description: Deduction form of bitr2i 183. (Contributed by NM, 9-Jun-2004.) |
Ref | Expression |
---|---|
bitr2d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bitr2d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bitr2d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2d.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | bitr2d.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | bitrd 186 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | bicomd 139 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: 3bitrrd 213 3bitr2rd 215 pm5.18dc 811 drex1 1720 elrnmpt1 4613 xpopth 5833 sbcopeq1a 5844 ltnnnq 6675 ltaddsub 7607 leaddsub 7609 posdif 7626 lesub1 7627 ltsub1 7629 lesub0 7650 possumd 7736 ltdivmul 8021 ledivmul 8022 zlem1lt 8488 zltlem1 8489 fzrev2 9178 fz1sbc 9189 elfzp1b 9190 qtri3or 9329 sumsqeq0 9651 sqrtle 10060 sqrtlt 10061 absgt0ap 10123 dvdssubr 10386 gcdn0gt0 10513 divgcdcoprmex 10628 |
Copyright terms: Public domain | W3C validator |