Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-axempty2 Unicode version

Theorem bj-axempty2 10843
Description: Axiom of the empty set from bounded separation, alternate version to bj-axempty 10842. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 3912 instead. (New usage is discouraged.)
Assertion
Ref Expression
bj-axempty2  |-  E. x A. y  -.  y  e.  x
Distinct variable group:    x, y

Proof of Theorem bj-axempty2
StepHypRef Expression
1 bj-axemptylem 10841 . 2  |-  E. x A. y ( y  e.  x  -> F.  )
2 dfnot 1303 . . . 4  |-  ( -.  y  e.  x  <->  ( y  e.  x  -> F.  )
)
32albii 1400 . . 3  |-  ( A. y  -.  y  e.  x  <->  A. y ( y  e.  x  -> F.  )
)
43exbii 1537 . 2  |-  ( E. x A. y  -.  y  e.  x  <->  E. x A. y ( y  e.  x  -> F.  )
)
51, 4mpbir 144 1  |-  E. x A. y  -.  y  e.  x
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1283   F. wfal 1290   E.wex 1422
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-5 1377  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-4 1441  ax-ial 1468  ax-bd0 10762  ax-bdim 10763  ax-bdn 10766  ax-bdeq 10769  ax-bdsep 10833
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-fal 1291
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator