Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-bdfindes Unicode version

Theorem bj-bdfindes 13136
Description: Bounded induction (principle of induction for bounded formulas), using explicit substitutions. Constructive proof (from CZF). See the comment of bj-bdfindis 13134 for explanations. From this version, it is easy to prove the bounded version of findes 4512. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-bdfindes.bd  |- BOUNDED  ph
Assertion
Ref Expression
bj-bdfindes  |-  ( (
[. (/)  /  x ]. ph 
/\  A. x  e.  om  ( ph  ->  [. suc  x  /  x ]. ph )
)  ->  A. x  e.  om  ph )

Proof of Theorem bj-bdfindes
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfv 1508 . . . 4  |-  F/ y
ph
2 nfv 1508 . . . 4  |-  F/ y
[. suc  x  /  x ]. ph
31, 2nfim 1551 . . 3  |-  F/ y ( ph  ->  [. suc  x  /  x ]. ph )
4 nfs1v 1910 . . . 4  |-  F/ x [ y  /  x ] ph
5 nfsbc1v 2922 . . . 4  |-  F/ x [. suc  y  /  x ]. ph
64, 5nfim 1551 . . 3  |-  F/ x
( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph )
7 sbequ12 1744 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  [ y  /  x ] ph ) )
8 suceq 4319 . . . . 5  |-  ( x  =  y  ->  suc  x  =  suc  y )
98sbceq1d 2909 . . . 4  |-  ( x  =  y  ->  ( [. suc  x  /  x ]. ph  <->  [. suc  y  /  x ]. ph ) )
107, 9imbi12d 233 . . 3  |-  ( x  =  y  ->  (
( ph  ->  [. suc  x  /  x ]. ph )  <->  ( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph )
) )
113, 6, 10cbvral 2648 . 2  |-  ( A. x  e.  om  ( ph  ->  [. suc  x  /  x ]. ph )  <->  A. y  e.  om  ( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph ) )
12 bj-bdfindes.bd . . 3  |- BOUNDED  ph
13 nfsbc1v 2922 . . 3  |-  F/ x [. (/)  /  x ]. ph
14 sbceq1a 2913 . . . 4  |-  ( x  =  (/)  ->  ( ph  <->  [. (/)  /  x ]. ph )
)
1514biimprd 157 . . 3  |-  ( x  =  (/)  ->  ( [. (/)  /  x ]. ph  ->  ph ) )
16 sbequ1 1741 . . 3  |-  ( x  =  y  ->  ( ph  ->  [ y  /  x ] ph ) )
17 sbceq1a 2913 . . . 4  |-  ( x  =  suc  y  -> 
( ph  <->  [. suc  y  /  x ]. ph ) )
1817biimprd 157 . . 3  |-  ( x  =  suc  y  -> 
( [. suc  y  /  x ]. ph  ->  ph )
)
1912, 13, 4, 5, 15, 16, 18bj-bdfindis 13134 . 2  |-  ( (
[. (/)  /  x ]. ph 
/\  A. y  e.  om  ( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph )
)  ->  A. x  e.  om  ph )
2011, 19sylan2b 285 1  |-  ( (
[. (/)  /  x ]. ph 
/\  A. x  e.  om  ( ph  ->  [. suc  x  /  x ]. ph )
)  ->  A. x  e.  om  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331   [wsb 1735   A.wral 2414   [.wsbc 2904   (/)c0 3358   suc csuc 4282   omcom 4499  BOUNDED wbd 12999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-nul 4049  ax-pr 4126  ax-un 4350  ax-bd0 13000  ax-bdor 13003  ax-bdex 13006  ax-bdeq 13007  ax-bdel 13008  ax-bdsb 13009  ax-bdsep 13071  ax-infvn 13128
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-sn 3528  df-pr 3529  df-uni 3732  df-int 3767  df-suc 4288  df-iom 4500  df-bdc 13028  df-bj-ind 13114
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator