![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdfindis | Unicode version |
Description: Bounded induction (principle of induction for bounded formulas), using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See finds 4343 for a proof of full induction in IZF. From this version, it is easy to prove bounded versions of finds 4343, finds2 4344, finds1 4345. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-bdfindis.bd |
![]() ![]() |
bj-bdfindis.nf0 |
![]() ![]() ![]() ![]() |
bj-bdfindis.nf1 |
![]() ![]() ![]() ![]() |
bj-bdfindis.nfsuc |
![]() ![]() ![]() ![]() |
bj-bdfindis.0 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bj-bdfindis.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bj-bdfindis.suc |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bj-bdfindis |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-bdfindis.nf0 |
. . . 4
![]() ![]() ![]() ![]() | |
2 | 0ex 3907 |
. . . 4
![]() ![]() ![]() ![]() | |
3 | bj-bdfindis.0 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | elabf2 10728 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | bj-bdfindis.nf1 |
. . . . . 6
![]() ![]() ![]() ![]() | |
6 | bj-bdfindis.1 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 5, 6 | elabf1 10727 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | bj-bdfindis.nfsuc |
. . . . . 6
![]() ![]() ![]() ![]() | |
9 | vex 2605 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
10 | 9 | bj-sucex 10857 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() |
11 | bj-bdfindis.suc |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
12 | 8, 10, 11 | elabf2 10728 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 7, 12 | imim12i 58 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 13 | ralimi 2427 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | bj-bdfindis.bd |
. . . . 5
![]() ![]() | |
16 | 15 | bdcab 10783 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() |
17 | 16 | bdpeano5 10881 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 4, 14, 17 | syl2an 283 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | ssabral 3066 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
20 | 18, 19 | sylib 120 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-nul 3906 ax-pr 3966 ax-un 4190 ax-bd0 10747 ax-bdor 10750 ax-bdex 10753 ax-bdeq 10754 ax-bdel 10755 ax-bdsb 10756 ax-bdsep 10818 ax-infvn 10879 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-rab 2358 df-v 2604 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-nul 3253 df-sn 3406 df-pr 3407 df-uni 3604 df-int 3639 df-suc 4128 df-iom 4334 df-bdc 10775 df-bj-ind 10865 |
This theorem is referenced by: bj-bdfindisg 10886 bj-bdfindes 10887 bj-nn0suc0 10888 |
Copyright terms: Public domain | W3C validator |