Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-findes Unicode version

Theorem bj-findes 13179
Description: Principle of induction, using explicit substitutions. Constructive proof (from CZF). See the comment of bj-findis 13177 for explanations. From this version, it is easy to prove findes 4517. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-findes  |-  ( (
[. (/)  /  x ]. ph 
/\  A. x  e.  om  ( ph  ->  [. suc  x  /  x ]. ph )
)  ->  A. x  e.  om  ph )

Proof of Theorem bj-findes
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfv 1508 . . . 4  |-  F/ y
ph
2 nfv 1508 . . . 4  |-  F/ y
[. suc  x  /  x ]. ph
31, 2nfim 1551 . . 3  |-  F/ y ( ph  ->  [. suc  x  /  x ]. ph )
4 nfs1v 1912 . . . 4  |-  F/ x [ y  /  x ] ph
5 nfsbc1v 2927 . . . 4  |-  F/ x [. suc  y  /  x ]. ph
64, 5nfim 1551 . . 3  |-  F/ x
( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph )
7 sbequ12 1744 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  [ y  /  x ] ph ) )
8 suceq 4324 . . . . 5  |-  ( x  =  y  ->  suc  x  =  suc  y )
98sbceq1d 2914 . . . 4  |-  ( x  =  y  ->  ( [. suc  x  /  x ]. ph  <->  [. suc  y  /  x ]. ph ) )
107, 9imbi12d 233 . . 3  |-  ( x  =  y  ->  (
( ph  ->  [. suc  x  /  x ]. ph )  <->  ( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph )
) )
113, 6, 10cbvral 2650 . 2  |-  ( A. x  e.  om  ( ph  ->  [. suc  x  /  x ]. ph )  <->  A. y  e.  om  ( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph ) )
12 nfsbc1v 2927 . . 3  |-  F/ x [. (/)  /  x ]. ph
13 sbceq1a 2918 . . . 4  |-  ( x  =  (/)  ->  ( ph  <->  [. (/)  /  x ]. ph )
)
1413biimprd 157 . . 3  |-  ( x  =  (/)  ->  ( [. (/)  /  x ]. ph  ->  ph ) )
15 sbequ1 1741 . . 3  |-  ( x  =  y  ->  ( ph  ->  [ y  /  x ] ph ) )
16 sbceq1a 2918 . . . 4  |-  ( x  =  suc  y  -> 
( ph  <->  [. suc  y  /  x ]. ph ) )
1716biimprd 157 . . 3  |-  ( x  =  suc  y  -> 
( [. suc  y  /  x ]. ph  ->  ph )
)
1812, 4, 5, 14, 15, 17bj-findis 13177 . 2  |-  ( (
[. (/)  /  x ]. ph 
/\  A. y  e.  om  ( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph )
)  ->  A. x  e.  om  ph )
1911, 18sylan2b 285 1  |-  ( (
[. (/)  /  x ]. ph 
/\  A. x  e.  om  ( ph  ->  [. suc  x  /  x ]. ph )
)  ->  A. x  e.  om  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331   [wsb 1735   A.wral 2416   [.wsbc 2909   (/)c0 3363   suc csuc 4287   omcom 4504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-nul 4054  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-bd0 13011  ax-bdim 13012  ax-bdan 13013  ax-bdor 13014  ax-bdn 13015  ax-bdal 13016  ax-bdex 13017  ax-bdeq 13018  ax-bdel 13019  ax-bdsb 13020  ax-bdsep 13082  ax-infvn 13139
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-sn 3533  df-pr 3534  df-uni 3737  df-int 3772  df-suc 4293  df-iom 4505  df-bdc 13039  df-bj-ind 13125
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator