Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-hbalt Unicode version

Theorem bj-hbalt 10725
Description: Closed form of hbal 1407 (copied from set.mm). (Contributed by BJ, 2-May-2019.)
Assertion
Ref Expression
bj-hbalt  |-  ( A. y ( ph  ->  A. x ph )  -> 
( A. y ph  ->  A. x A. y ph ) )

Proof of Theorem bj-hbalt
StepHypRef Expression
1 alim 1387 . 2  |-  ( A. y ( ph  ->  A. x ph )  -> 
( A. y ph  ->  A. y A. x ph ) )
2 ax-7 1378 . 2  |-  ( A. y A. x ph  ->  A. x A. y ph )
31, 2syl6 33 1  |-  ( A. y ( ph  ->  A. x ph )  -> 
( A. y ph  ->  A. x A. y ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1283
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-5 1377  ax-7 1378
This theorem is referenced by:  bj-nfalt  10726
  Copyright terms: Public domain W3C validator