Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-intnexr Unicode version

Theorem bj-intnexr 10843
Description: intnexr 3928 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-intnexr  |-  ( |^| A  =  _V  ->  -. 
|^| A  e.  _V )

Proof of Theorem bj-intnexr
StepHypRef Expression
1 bj-vprc 10830 . 2  |-  -.  _V  e.  _V
2 eleq1 2142 . 2  |-  ( |^| A  =  _V  ->  (
|^| A  e.  _V  <->  _V  e.  _V ) )
31, 2mtbiri 633 1  |-  ( |^| A  =  _V  ->  -. 
|^| A  e.  _V )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1285    e. wcel 1434   _Vcvv 2602   |^|cint 3638
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-5 1377  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-ext 2064  ax-bdn 10751  ax-bdel 10755  ax-bdsep 10818
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-v 2604
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator