Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-sels Unicode version

Theorem bj-sels 10421
Description: If a class is a set, then it is a member of a set. (Copied from set.mm.) (Contributed by BJ, 3-Apr-2019.)
Assertion
Ref Expression
bj-sels  |-  ( A  e.  V  ->  E. x  A  e.  x )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem bj-sels
StepHypRef Expression
1 snidg 3428 . . 3  |-  ( A  e.  V  ->  A  e.  { A } )
2 bj-snexg 10419 . . . . 5  |-  ( A  e.  V  ->  { A }  e.  _V )
3 sbcel2g 2899 . . . . 5  |-  ( { A }  e.  _V  ->  ( [. { A }  /  x ]. A  e.  x  <->  A  e.  [_ { A }  /  x ]_ x ) )
42, 3syl 14 . . . 4  |-  ( A  e.  V  ->  ( [. { A }  /  x ]. A  e.  x  <->  A  e.  [_ { A }  /  x ]_ x
) )
5 csbvarg 2905 . . . . . 6  |-  ( { A }  e.  _V  ->  [_ { A }  /  x ]_ x  =  { A } )
62, 5syl 14 . . . . 5  |-  ( A  e.  V  ->  [_ { A }  /  x ]_ x  =  { A } )
76eleq2d 2123 . . . 4  |-  ( A  e.  V  ->  ( A  e.  [_ { A }  /  x ]_ x  <->  A  e.  { A }
) )
84, 7bitrd 181 . . 3  |-  ( A  e.  V  ->  ( [. { A }  /  x ]. A  e.  x  <->  A  e.  { A }
) )
91, 8mpbird 160 . 2  |-  ( A  e.  V  ->  [. { A }  /  x ]. A  e.  x
)
109spesbcd 2872 1  |-  ( A  e.  V  ->  E. x  A  e.  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 102    = wceq 1259   E.wex 1397    e. wcel 1409   _Vcvv 2574   [.wsbc 2787   [_csb 2880   {csn 3403
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-pr 3972  ax-bdor 10323  ax-bdeq 10327  ax-bdsep 10391
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-rex 2329  df-v 2576  df-sbc 2788  df-csb 2881  df-un 2950  df-sn 3409  df-pr 3410
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator