Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-zfpair2 Unicode version

Theorem bj-zfpair2 13108
Description: Proof of zfpair2 4132 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-zfpair2  |-  { x ,  y }  e.  _V

Proof of Theorem bj-zfpair2
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-bdeq 13018 . . . . 5  |- BOUNDED  w  =  x
2 ax-bdeq 13018 . . . . 5  |- BOUNDED  w  =  y
31, 2ax-bdor 13014 . . . 4  |- BOUNDED  ( w  =  x  \/  w  =  y )
4 ax-pr 4131 . . . 4  |-  E. z A. w ( ( w  =  x  \/  w  =  y )  ->  w  e.  z )
53, 4bdbm1.3ii 13089 . . 3  |-  E. z A. w ( w  e.  z  <->  ( w  =  x  \/  w  =  y ) )
6 dfcleq 2133 . . . . 5  |-  ( z  =  { x ,  y }  <->  A. w
( w  e.  z  <-> 
w  e.  { x ,  y } ) )
7 vex 2689 . . . . . . . 8  |-  w  e. 
_V
87elpr 3548 . . . . . . 7  |-  ( w  e.  { x ,  y }  <->  ( w  =  x  \/  w  =  y ) )
98bibi2i 226 . . . . . 6  |-  ( ( w  e.  z  <->  w  e.  { x ,  y } )  <->  ( w  e.  z  <->  ( w  =  x  \/  w  =  y ) ) )
109albii 1446 . . . . 5  |-  ( A. w ( w  e.  z  <->  w  e.  { x ,  y } )  <->  A. w ( w  e.  z  <->  ( w  =  x  \/  w  =  y ) ) )
116, 10bitri 183 . . . 4  |-  ( z  =  { x ,  y }  <->  A. w
( w  e.  z  <-> 
( w  =  x  \/  w  =  y ) ) )
1211exbii 1584 . . 3  |-  ( E. z  z  =  {
x ,  y }  <->  E. z A. w ( w  e.  z  <->  ( w  =  x  \/  w  =  y ) ) )
135, 12mpbir 145 . 2  |-  E. z 
z  =  { x ,  y }
1413issetri 2695 1  |-  { x ,  y }  e.  _V
Colors of variables: wff set class
Syntax hints:    <-> wb 104    \/ wo 697   A.wal 1329    = wceq 1331   E.wex 1468    e. wcel 1480   _Vcvv 2686   {cpr 3528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-pr 4131  ax-bdor 13014  ax-bdeq 13018  ax-bdsep 13082
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-un 3075  df-sn 3533  df-pr 3534
This theorem is referenced by:  bj-prexg  13109
  Copyright terms: Public domain W3C validator