Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  bm1.1 Unicode version

Theorem bm1.1 2041
 Description: Any set defined by a property is the only set defined by that property. Theorem 1.1 of [BellMachover] p. 462. (Contributed by NM, 30-Jun-1994.)
Hypothesis
Ref Expression
bm1.1.1
Assertion
Ref Expression
bm1.1
Distinct variable group:   ,
Allowed substitution hints:   (,)

Proof of Theorem bm1.1
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 nfv 1437 . . . . . . . 8
2 bm1.1.1 . . . . . . . 8
31, 2nfbi 1497 . . . . . . 7
43nfal 1484 . . . . . 6
5 elequ2 1617 . . . . . . . 8
65bibi1d 226 . . . . . . 7
76albidv 1721 . . . . . 6
84, 7sbie 1690 . . . . 5
9 19.26 1386 . . . . . 6
10 biantr 870 . . . . . . . 8
1110alimi 1360 . . . . . . 7
12 ax-ext 2038 . . . . . . 7
1311, 12syl 14 . . . . . 6
149, 13sylbir 129 . . . . 5
158, 14sylan2b 275 . . . 4
1615gen2 1355 . . 3
1716jctr 302 . 2
18 nfv 1437 . . 3
1918eu2 1960 . 2
2017, 19sylibr 141 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 101   wb 102  wal 1257  wnf 1365  wex 1397  wsb 1661  weu 1916 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919 This theorem is referenced by:  zfnuleu  3909
 Copyright terms: Public domain W3C validator