Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  brab Unicode version

Theorem brab 4035
 Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.)
Hypotheses
Ref Expression
opelopab.1
opelopab.2
opelopab.3
opelopab.4
brab.5
Assertion
Ref Expression
brab
Distinct variable groups:   ,,   ,,   ,,
Allowed substitution hints:   (,)   (,)   (,)

Proof of Theorem brab
StepHypRef Expression
1 opelopab.1 . 2
2 opelopab.2 . 2
3 opelopab.3 . . 3
4 opelopab.4 . . 3
5 brab.5 . . 3
63, 4, 5brabg 4032 . 2
71, 2, 6mp2an 417 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 103   wceq 1285   wcel 1434  cvv 2602   class class class wbr 3793  copab 3846 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-br 3794  df-opab 3848 This theorem is referenced by:  dftpos4  5912  enq0sym  6684  enq0ref  6685  enq0tr  6686  shftfn  9850
 Copyright terms: Public domain W3C validator