ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brcnvg Unicode version

Theorem brcnvg 4564
Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 10-Oct-2005.)
Assertion
Ref Expression
brcnvg  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A `' R B 
<->  B R A ) )

Proof of Theorem brcnvg
StepHypRef Expression
1 opelcnvg 4563 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R ) )
2 df-br 3806 . 2  |-  ( A `' R B  <->  <. A ,  B >.  e.  `' R
)
3 df-br 3806 . 2  |-  ( B R A  <->  <. B ,  A >.  e.  R )
41, 2, 33bitr4g 221 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A `' R B 
<->  B R A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1434   <.cop 3419   class class class wbr 3805   `'ccnv 4390
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-v 2612  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-br 3806  df-opab 3860  df-cnv 4399
This theorem is referenced by:  brcnv  4566  brelrng  4613  eliniseg  4745  relbrcnvg  4754  brcodir  4762  sefvex  5247  foeqcnvco  5481  isocnv2  5503  ersym  6205  brdifun  6220  ecidg  6257  cnvti  6526  eqinfti  6527  inflbti  6531  infglbti  6532  negiso  8152
  Copyright terms: Public domain W3C validator