ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brdifun Unicode version

Theorem brdifun 6199
Description: Evaluate the incomparability relation. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
swoer.1  |-  R  =  ( ( X  X.  X )  \  (  .<  u.  `'  .<  )
)
Assertion
Ref Expression
brdifun  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A R B  <->  -.  ( A  .<  B  \/  B  .<  A ) ) )

Proof of Theorem brdifun
StepHypRef Expression
1 opelxpi 4402 . . . 4  |-  ( ( A  e.  X  /\  B  e.  X )  -> 
<. A ,  B >.  e.  ( X  X.  X
) )
2 df-br 3794 . . . 4  |-  ( A ( X  X.  X
) B  <->  <. A ,  B >.  e.  ( X  X.  X ) )
31, 2sylibr 132 . . 3  |-  ( ( A  e.  X  /\  B  e.  X )  ->  A ( X  X.  X ) B )
4 swoer.1 . . . . . 6  |-  R  =  ( ( X  X.  X )  \  (  .<  u.  `'  .<  )
)
54breqi 3799 . . . . 5  |-  ( A R B  <->  A (
( X  X.  X
)  \  (  .<  u.  `'  .<  ) ) B )
6 brdif 3841 . . . . 5  |-  ( A ( ( X  X.  X )  \  (  .<  u.  `'  .<  )
) B  <->  ( A
( X  X.  X
) B  /\  -.  A (  .<  u.  `'  .<  ) B ) )
75, 6bitri 182 . . . 4  |-  ( A R B  <->  ( A
( X  X.  X
) B  /\  -.  A (  .<  u.  `'  .<  ) B ) )
87baib 862 . . 3  |-  ( A ( X  X.  X
) B  ->  ( A R B  <->  -.  A
(  .<  u.  `'  .<  ) B ) )
93, 8syl 14 . 2  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A R B  <->  -.  A (  .<  u.  `'  .<  ) B ) )
10 brun 3839 . . . 4  |-  ( A (  .<  u.  `'  .<  ) B  <->  ( A  .<  B  \/  A `'  .<  B ) )
11 brcnvg 4544 . . . . 5  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A `'  .<  B  <-> 
B  .<  A ) )
1211orbi2d 737 . . . 4  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( ( A  .<  B  \/  A `'  .<  B )  <->  ( A  .<  B  \/  B  .<  A ) ) )
1310, 12syl5bb 190 . . 3  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A (  .<  u.  `'  .<  ) B  <->  ( A  .<  B  \/  B  .<  A ) ) )
1413notbid 625 . 2  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( -.  A ( 
.<  u.  `'  .<  ) B 
<->  -.  ( A  .<  B  \/  B  .<  A ) ) )
159, 14bitrd 186 1  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A R B  <->  -.  ( A  .<  B  \/  B  .<  A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 662    = wceq 1285    e. wcel 1434    \ cdif 2971    u. cun 2972   <.cop 3409   class class class wbr 3793    X. cxp 4369   `'ccnv 4370
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-br 3794  df-opab 3848  df-xp 4377  df-cnv 4379
This theorem is referenced by:  swoer  6200  swoord1  6201  swoord2  6202
  Copyright terms: Public domain W3C validator