ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brdomi Unicode version

Theorem brdomi 6318
Description: Dominance relation. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brdomi  |-  ( A  ~<_  B  ->  E. f 
f : A -1-1-> B
)
Distinct variable groups:    A, f    B, f

Proof of Theorem brdomi
StepHypRef Expression
1 reldom 6314 . . . 4  |-  Rel  ~<_
21brrelex2i 4432 . . 3  |-  ( A  ~<_  B  ->  B  e.  _V )
3 brdomg 6317 . . 3  |-  ( B  e.  _V  ->  ( A  ~<_  B  <->  E. f 
f : A -1-1-> B
) )
42, 3syl 14 . 2  |-  ( A  ~<_  B  ->  ( A  ~<_  B 
<->  E. f  f : A -1-1-> B ) )
54ibi 174 1  |-  ( A  ~<_  B  ->  E. f 
f : A -1-1-> B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103   E.wex 1422    e. wcel 1434   _Vcvv 2610   class class class wbr 3806   -1-1->wf1 4950    ~<_ cdom 6308
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3917  ax-pow 3969  ax-pr 3993  ax-un 4217
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2612  df-un 2987  df-in 2989  df-ss 2996  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-br 3807  df-opab 3861  df-xp 4398  df-rel 4399  df-cnv 4400  df-dm 4402  df-rn 4403  df-fn 4956  df-f 4957  df-f1 4958  df-dom 6311
This theorem is referenced by:  ctex  6322  2dom  6374  xpdom2  6397  isinfinf  6454  infm  6456
  Copyright terms: Public domain W3C validator