![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > breq | Unicode version |
Description: Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995.) |
Ref | Expression |
---|---|
breq |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2143 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | df-br 3794 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | df-br 3794 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3bitr4g 221 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-4 1441 ax-17 1460 ax-ial 1468 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-cleq 2075 df-clel 2078 df-br 3794 |
This theorem is referenced by: breqi 3799 breqd 3804 poeq1 4062 soeq1 4078 frforeq1 4106 weeq1 4119 fveq1 5208 foeqcnvco 5461 f1eqcocnv 5462 isoeq2 5473 isoeq3 5474 ofreq 5746 supeq3 6462 shftfvalg 9844 shftfval 9847 |
Copyright terms: Public domain | W3C validator |