![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > breq2i | Unicode version |
Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq1i.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
breq2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1i.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | breq2 3809 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 7 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-v 2612 df-un 2986 df-sn 3422 df-pr 3423 df-op 3425 df-br 3806 |
This theorem is referenced by: breqtri 3828 en1 6367 snnen2og 6415 1nen2 6417 pm54.43 6570 caucvgprprlemval 6992 caucvgprprlemmu 6999 caucvgsr 7092 pitonnlem1 7127 lt0neg2 7692 le0neg2 7694 negap0 7848 recexaplem2 7861 recgt1 8094 crap0 8154 addltmul 8386 nn0lt10b 8561 nn0lt2 8562 3halfnz 8577 xlt0neg2 9034 xle0neg2 9036 iccshftr 9144 iccshftl 9146 iccdil 9148 icccntr 9150 fihashen1 9875 cjap0 9995 abs00ap 10149 3dvdsdec 10472 3dvds2dec 10473 ndvdsi 10540 3prm 10717 prmfac1 10738 |
Copyright terms: Public domain | W3C validator |