ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brtpos0 Unicode version

Theorem brtpos0 5898
Description: The behavior of tpos when the left argument is the empty set (which is not an ordered pair but is the "default" value of an ordered pair when the arguments are proper classes). (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
brtpos0  |-  ( A  e.  V  ->  ( (/)tpos  F A  <->  (/) F A ) )

Proof of Theorem brtpos0
StepHypRef Expression
1 brtpos2 5897 . 2  |-  ( A  e.  V  ->  ( (/)tpos  F A  <->  ( (/)  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { (/) } F A ) ) )
2 ssun2 3135 . . . . 5  |-  { (/) } 
C_  ( `' dom  F  u.  { (/) } )
3 0ex 3912 . . . . . 6  |-  (/)  e.  _V
43snid 3430 . . . . 5  |-  (/)  e.  { (/)
}
52, 4sselii 2970 . . . 4  |-  (/)  e.  ( `' dom  F  u.  { (/)
} )
65biantrur 291 . . 3  |-  ( U. `' { (/) } F A  <-> 
( (/)  e.  ( `' dom  F  u.  { (/)
} )  /\  U. `' { (/) } F A ) )
7 cnvsn0 4817 . . . . . 6  |-  `' { (/)
}  =  (/)
87unieqi 3618 . . . . 5  |-  U. `' { (/) }  =  U. (/)
9 uni0 3635 . . . . 5  |-  U. (/)  =  (/)
108, 9eqtri 2076 . . . 4  |-  U. `' { (/) }  =  (/)
1110breq1i 3799 . . 3  |-  ( U. `' { (/) } F A  <->  (/) F A )
126, 11bitr3i 179 . 2  |-  ( (
(/)  e.  ( `' dom  F  u.  { (/) } )  /\  U. `' { (/) } F A )  <->  (/) F A )
131, 12syl6bb 189 1  |-  ( A  e.  V  ->  ( (/)tpos  F A  <->  (/) F A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    e. wcel 1409    u. cun 2943   (/)c0 3252   {csn 3403   U.cuni 3608   class class class wbr 3792   `'ccnv 4372   dom cdm 4373  tpos ctpos 5890
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-sbc 2788  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-mpt 3848  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-fv 4938  df-tpos 5891
This theorem is referenced by:  reldmtpos  5899  tpostpos  5910
  Copyright terms: Public domain W3C validator