ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovcl Unicode version

Theorem caovcl 5680
Description: Convert an operation closure law to class notation. (Contributed by NM, 4-Aug-1995.) (Revised by Mario Carneiro, 26-May-2014.)
Hypothesis
Ref Expression
caovcl.1  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x F y )  e.  S )
Assertion
Ref Expression
caovcl  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( A F B )  e.  S )
Distinct variable groups:    x, y, A   
y, B    x, F, y    x, S, y
Allowed substitution hint:    B( x)

Proof of Theorem caovcl
StepHypRef Expression
1 tru 1289 . 2  |- T.
2 caovcl.1 . . . 4  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x F y )  e.  S )
32adantl 271 . . 3  |-  ( ( T.  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  e.  S )
43caovclg 5678 . 2  |-  ( ( T.  /\  ( A  e.  S  /\  B  e.  S ) )  -> 
( A F B )  e.  S )
51, 4mpan 415 1  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( A F B )  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102   T. wtru 1286    e. wcel 1434  (class class class)co 5537
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-br 3788  df-iota 4891  df-fv 4934  df-ov 5540
This theorem is referenced by:  ecopovtrn  6262  ecopovtrng  6265  genpelvl  6753  genpelvu  6754  genpml  6758  genpmu  6759  genprndl  6762  genprndu  6763  genpassl  6765  genpassu  6766  genpassg  6767  expcllem  9573
  Copyright terms: Public domain W3C validator