ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemladdfu Unicode version

Theorem cauappcvgprlemladdfu 6906
Description: Lemma for cauappcvgprlemladd 6910. The forward subset relationship for the upper cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f  |-  ( ph  ->  F : Q. --> Q. )
cauappcvgpr.app  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
cauappcvgpr.bnd  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
cauappcvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
cauappcvgprlemladd.s  |-  ( ph  ->  S  e.  Q. )
Assertion
Ref Expression
cauappcvgprlemladdfu  |-  ( ph  ->  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  C_  ( 2nd ` 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) )
Distinct variable groups:    A, p    L, p, q    ph, p, q    F, l, u, p, q    S, l, q, u
Allowed substitution hints:    ph( u, l)    A( u, q, l)    S( p)    L( u, l)

Proof of Theorem cauappcvgprlemladdfu
Dummy variables  f  g  h  r  s  t  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cauappcvgpr.f . . . . . . 7  |-  ( ph  ->  F : Q. --> Q. )
2 cauappcvgpr.app . . . . . . 7  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
3 cauappcvgpr.bnd . . . . . . 7  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
4 cauappcvgpr.lim . . . . . . 7  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
51, 2, 3, 4cauappcvgprlemcl 6905 . . . . . 6  |-  ( ph  ->  L  e.  P. )
6 cauappcvgprlemladd.s . . . . . . 7  |-  ( ph  ->  S  e.  Q. )
7 nqprlu 6799 . . . . . . 7  |-  ( S  e.  Q.  ->  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >.  e.  P. )
86, 7syl 14 . . . . . 6  |-  ( ph  -> 
<. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  e.  P. )
9 df-iplp 6720 . . . . . . 7  |-  +P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  x )  /\  h  e.  ( 1st `  y
)  /\  f  =  ( g  +Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  x )  /\  h  e.  ( 2nd `  y
)  /\  f  =  ( g  +Q  h
) ) } >. )
10 addclnq 6627 . . . . . . 7  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
119, 10genpelvu 6765 . . . . . 6  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  e.  P. )  ->  ( r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  <->  E. s  e.  ( 2nd `  L ) E. t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
r  =  ( s  +Q  t ) ) )
125, 8, 11syl2anc 403 . . . . 5  |-  ( ph  ->  ( r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  <->  E. s  e.  ( 2nd `  L ) E. t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
r  =  ( s  +Q  t ) ) )
1312biimpa 290 . . . 4  |-  ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  ->  E. s  e.  ( 2nd `  L
) E. t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) r  =  ( s  +Q  t ) )
14 breq2 3797 . . . . . . . . . . . . . . . 16  |-  ( u  =  s  ->  (
( ( F `  q )  +Q  q
)  <Q  u  <->  ( ( F `  q )  +Q  q )  <Q  s
) )
1514rexbidv 2370 . . . . . . . . . . . . . . 15  |-  ( u  =  s  ->  ( E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u  <->  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  s
) )
164fveq2i 5212 . . . . . . . . . . . . . . . 16  |-  ( 2nd `  L )  =  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >. )
17 nqex 6615 . . . . . . . . . . . . . . . . . 18  |-  Q.  e.  _V
1817rabex 3930 . . . . . . . . . . . . . . . . 17  |-  { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) }  e.  _V
1917rabex 3930 . . . . . . . . . . . . . . . . 17  |-  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u }  e.  _V
2018, 19op2nd 5805 . . . . . . . . . . . . . . . 16  |-  ( 2nd `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u } >. )  =  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u }
2116, 20eqtri 2102 . . . . . . . . . . . . . . 15  |-  ( 2nd `  L )  =  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u }
2215, 21elrab2 2752 . . . . . . . . . . . . . 14  |-  ( s  e.  ( 2nd `  L
)  <->  ( s  e. 
Q.  /\  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  s
) )
2322biimpi 118 . . . . . . . . . . . . 13  |-  ( s  e.  ( 2nd `  L
)  ->  ( s  e.  Q.  /\  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  s
) )
2423adantr 270 . . . . . . . . . . . 12  |-  ( ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) )  ->  (
s  e.  Q.  /\  E. q  e.  Q.  (
( F `  q
)  +Q  q ) 
<Q  s ) )
2524adantl 271 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  -> 
( s  e.  Q.  /\ 
E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  s ) )
2625adantr 270 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( s  e.  Q.  /\ 
E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  s ) )
2726simpld 110 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
s  e.  Q. )
28 vex 2605 . . . . . . . . . . . . . 14  |-  t  e. 
_V
29 breq2 3797 . . . . . . . . . . . . . 14  |-  ( u  =  t  ->  ( S  <Q  u  <->  S  <Q  t ) )
30 ltnqex 6801 . . . . . . . . . . . . . . 15  |-  { l  |  l  <Q  S }  e.  _V
31 gtnqex 6802 . . . . . . . . . . . . . . 15  |-  { u  |  S  <Q  u }  e.  _V
3230, 31op2nd 5805 . . . . . . . . . . . . . 14  |-  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  =  { u  |  S  <Q  u }
3328, 29, 32elab2 2742 . . . . . . . . . . . . 13  |-  ( t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  <->  S  <Q  t )
34 ltrelnq 6617 . . . . . . . . . . . . . 14  |-  <Q  C_  ( Q.  X.  Q. )
3534brel 4418 . . . . . . . . . . . . 13  |-  ( S 
<Q  t  ->  ( S  e.  Q.  /\  t  e.  Q. ) )
3633, 35sylbi 119 . . . . . . . . . . . 12  |-  ( t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  ->  ( S  e.  Q.  /\  t  e. 
Q. ) )
3736simprd 112 . . . . . . . . . . 11  |-  ( t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  ->  t  e.  Q. )
3837ad2antll 475 . . . . . . . . . 10  |-  ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  -> 
t  e.  Q. )
3938adantr 270 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
t  e.  Q. )
40 addclnq 6627 . . . . . . . . 9  |-  ( ( s  e.  Q.  /\  t  e.  Q. )  ->  ( s  +Q  t
)  e.  Q. )
4127, 39, 40syl2anc 403 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( s  +Q  t
)  e.  Q. )
42 eleq1 2142 . . . . . . . . 9  |-  ( r  =  ( s  +Q  t )  ->  (
r  e.  Q.  <->  ( s  +Q  t )  e.  Q. ) )
4342adantl 271 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( r  e.  Q.  <->  ( s  +Q  t )  e.  Q. ) )
4441, 43mpbird 165 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
r  e.  Q. )
4526simprd 112 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  ->  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  s )
4633biimpi 118 . . . . . . . . . . . . . . . 16  |-  ( t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  ->  S  <Q  t )
4746ad2antll 475 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  ->  S  <Q  t )
4847adantr 270 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  ->  S  <Q  t )
4948ad2antrr 472 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  ->  S  <Q  t )
506ad5antr 480 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  ->  S  e.  Q. )
5139ad2antrr 472 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  -> 
t  e.  Q. )
521ad5antr 480 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  ->  F : Q. --> Q. )
53 simplr 497 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  -> 
q  e.  Q. )
5452, 53ffvelrnd 5335 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  -> 
( F `  q
)  e.  Q. )
55 addclnq 6627 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  q
)  e.  Q.  /\  q  e.  Q. )  ->  ( ( F `  q )  +Q  q
)  e.  Q. )
5654, 53, 55syl2anc 403 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  -> 
( ( F `  q )  +Q  q
)  e.  Q. )
57 ltanqg 6652 . . . . . . . . . . . . . 14  |-  ( ( S  e.  Q.  /\  t  e.  Q.  /\  (
( F `  q
)  +Q  q )  e.  Q. )  -> 
( S  <Q  t  <->  ( ( ( F `  q )  +Q  q
)  +Q  S ) 
<Q  ( ( ( F `
 q )  +Q  q )  +Q  t
) ) )
5850, 51, 56, 57syl3anc 1170 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  -> 
( S  <Q  t  <->  ( ( ( F `  q )  +Q  q
)  +Q  S ) 
<Q  ( ( ( F `
 q )  +Q  q )  +Q  t
) ) )
5949, 58mpbid 145 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  -> 
( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  ( ( ( F `  q )  +Q  q )  +Q  t ) )
60 simpr 108 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  -> 
( ( F `  q )  +Q  q
)  <Q  s )
61 ltanqg 6652 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
6261adantl 271 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  /\  ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )
)  ->  ( f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
6327ad2antrr 472 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  -> 
s  e.  Q. )
64 addcomnqg 6633 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
6564adantl 271 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  /\  ( f  e.  Q.  /\  g  e.  Q. )
)  ->  ( f  +Q  g )  =  ( g  +Q  f ) )
6662, 56, 63, 51, 65caovord2d 5701 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  -> 
( ( ( F `
 q )  +Q  q )  <Q  s  <->  ( ( ( F `  q )  +Q  q
)  +Q  t ) 
<Q  ( s  +Q  t
) ) )
6760, 66mpbid 145 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  -> 
( ( ( F `
 q )  +Q  q )  +Q  t
)  <Q  ( s  +Q  t ) )
68 ltsonq 6650 . . . . . . . . . . . . 13  |-  <Q  Or  Q.
6968, 34sotri 4750 . . . . . . . . . . . 12  |-  ( ( ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  ( ( ( F `  q )  +Q  q )  +Q  t )  /\  (
( ( F `  q )  +Q  q
)  +Q  t ) 
<Q  ( s  +Q  t
) )  ->  (
( ( F `  q )  +Q  q
)  +Q  S ) 
<Q  ( s  +Q  t
) )
7059, 67, 69syl2anc 403 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  -> 
( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  ( s  +Q  t ) )
71 simpllr 501 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  -> 
r  =  ( s  +Q  t ) )
7270, 71breqtrrd 3819 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  -> 
( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  r )
7372ex 113 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  ->  ( ( ( F `
 q )  +Q  q )  <Q  s  ->  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  r ) )
7473reximdva 2464 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( E. q  e. 
Q.  ( ( F `
 q )  +Q  q )  <Q  s  ->  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  r ) )
7545, 74mpd 13 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  ->  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  r )
76 breq2 3797 . . . . . . . . 9  |-  ( u  =  r  ->  (
( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u  <->  ( (
( F `  q
)  +Q  q )  +Q  S )  <Q 
r ) )
7776rexbidv 2370 . . . . . . . 8  |-  ( u  =  r  ->  ( E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u  <->  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  r
) )
7817rabex 3930 . . . . . . . . 9  |-  { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) }  e.  _V
7917rabex 3930 . . . . . . . . 9  |-  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u }  e.  _V
8078, 79op2nd 5805 . . . . . . . 8  |-  ( 2nd `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. )  =  {
u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u }
8177, 80elrab2 2752 . . . . . . 7  |-  ( r  e.  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. )  <-> 
( r  e.  Q.  /\ 
E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  r ) )
8244, 75, 81sylanbrc 408 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
r  e.  ( 2nd `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. ) )
8382ex 113 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  -> 
( r  =  ( s  +Q  t )  ->  r  e.  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) ) )
8483rexlimdvva 2485 . . . 4  |-  ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  ->  ( E. s  e.  ( 2nd `  L ) E. t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
r  =  ( s  +Q  t )  -> 
r  e.  ( 2nd `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. ) ) )
8513, 84mpd 13 . . 3  |-  ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  ->  r  e.  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) )
8685ex 113 . 2  |-  ( ph  ->  ( r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  ->  r  e.  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) ) )
8786ssrdv 3006 1  |-  ( ph  ->  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  C_  ( 2nd ` 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 920    = wceq 1285    e. wcel 1434   {cab 2068   A.wral 2349   E.wrex 2350   {crab 2353    C_ wss 2974   <.cop 3409   class class class wbr 3793   -->wf 4928   ` cfv 4932  (class class class)co 5543   2ndc2nd 5797   Q.cnq 6532    +Q cplq 6534    <Q cltq 6537   P.cnp 6543    +P. cpp 6545
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-eprel 4052  df-id 4056  df-po 4059  df-iso 4060  df-iord 4129  df-on 4131  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-irdg 6019  df-1o 6065  df-oadd 6069  df-omul 6070  df-er 6172  df-ec 6174  df-qs 6178  df-ni 6556  df-pli 6557  df-mi 6558  df-lti 6559  df-plpq 6596  df-mpq 6597  df-enq 6599  df-nqqs 6600  df-plqqs 6601  df-mqqs 6602  df-1nqqs 6603  df-rq 6604  df-ltnqqs 6605  df-inp 6718  df-iplp 6720
This theorem is referenced by:  cauappcvgprlemladdrl  6909  cauappcvgprlemladd  6910
  Copyright terms: Public domain W3C validator