ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemm Unicode version

Theorem cauappcvgprlemm 6801
Description: Lemma for cauappcvgpr 6818. The putative limit is inhabited. (Contributed by Jim Kingdon, 18-Jul-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f  |-  ( ph  ->  F : Q. --> Q. )
cauappcvgpr.app  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
cauappcvgpr.bnd  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
cauappcvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
Assertion
Ref Expression
cauappcvgprlemm  |-  ( ph  ->  ( E. s  e. 
Q.  s  e.  ( 1st `  L )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  L ) ) )
Distinct variable groups:    A, p    L, p, q    ph, p, q    L, r, s    A, s, p    F, l, u, p, q, r, s    ph, r,
s
Allowed substitution hints:    ph( u, l)    A( u, r, q, l)    L( u, l)

Proof of Theorem cauappcvgprlemm
StepHypRef Expression
1 1nq 6522 . . . . . 6  |-  1Q  e.  Q.
2 cauappcvgpr.bnd . . . . . 6  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
3 fveq2 5206 . . . . . . . 8  |-  ( p  =  1Q  ->  ( F `  p )  =  ( F `  1Q ) )
43breq2d 3804 . . . . . . 7  |-  ( p  =  1Q  ->  ( A  <Q  ( F `  p )  <->  A  <Q  ( F `  1Q ) ) )
54rspcv 2669 . . . . . 6  |-  ( 1Q  e.  Q.  ->  ( A. p  e.  Q.  A  <Q  ( F `  p )  ->  A  <Q  ( F `  1Q ) ) )
61, 2, 5mpsyl 63 . . . . 5  |-  ( ph  ->  A  <Q  ( F `  1Q ) )
7 ltrelnq 6521 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
87brel 4420 . . . . . 6  |-  ( A 
<Q  ( F `  1Q )  ->  ( A  e. 
Q.  /\  ( F `  1Q )  e.  Q. ) )
98simpld 109 . . . . 5  |-  ( A 
<Q  ( F `  1Q )  ->  A  e.  Q. )
106, 9syl 14 . . . 4  |-  ( ph  ->  A  e.  Q. )
11 halfnqq 6566 . . . 4  |-  ( A  e.  Q.  ->  E. s  e.  Q.  ( s  +Q  s )  =  A )
1210, 11syl 14 . . 3  |-  ( ph  ->  E. s  e.  Q.  ( s  +Q  s
)  =  A )
13 simplr 490 . . . . . 6  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  -> 
s  e.  Q. )
142ad2antrr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
15 fveq2 5206 . . . . . . . . . . . 12  |-  ( p  =  s  ->  ( F `  p )  =  ( F `  s ) )
1615breq2d 3804 . . . . . . . . . . 11  |-  ( p  =  s  ->  ( A  <Q  ( F `  p )  <->  A  <Q  ( F `  s ) ) )
1716rspcv 2669 . . . . . . . . . 10  |-  ( s  e.  Q.  ->  ( A. p  e.  Q.  A  <Q  ( F `  p )  ->  A  <Q  ( F `  s
) ) )
1817ad2antlr 466 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  -> 
( A. p  e. 
Q.  A  <Q  ( F `  p )  ->  A  <Q  ( F `  s ) ) )
1914, 18mpd 13 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  ->  A  <Q  ( F `  s ) )
20 breq1 3795 . . . . . . . . 9  |-  ( ( s  +Q  s )  =  A  ->  (
( s  +Q  s
)  <Q  ( F `  s )  <->  A  <Q  ( F `  s ) ) )
2120adantl 266 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  -> 
( ( s  +Q  s )  <Q  ( F `  s )  <->  A 
<Q  ( F `  s
) ) )
2219, 21mpbird 160 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  -> 
( s  +Q  s
)  <Q  ( F `  s ) )
23 oveq2 5548 . . . . . . . . 9  |-  ( q  =  s  ->  (
s  +Q  q )  =  ( s  +Q  s ) )
24 fveq2 5206 . . . . . . . . 9  |-  ( q  =  s  ->  ( F `  q )  =  ( F `  s ) )
2523, 24breq12d 3805 . . . . . . . 8  |-  ( q  =  s  ->  (
( s  +Q  q
)  <Q  ( F `  q )  <->  ( s  +Q  s )  <Q  ( F `  s )
) )
2625rspcev 2673 . . . . . . 7  |-  ( ( s  e.  Q.  /\  ( s  +Q  s
)  <Q  ( F `  s ) )  ->  E. q  e.  Q.  ( s  +Q  q
)  <Q  ( F `  q ) )
2713, 22, 26syl2anc 397 . . . . . 6  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  ->  E. q  e.  Q.  ( s  +Q  q
)  <Q  ( F `  q ) )
28 oveq1 5547 . . . . . . . . 9  |-  ( l  =  s  ->  (
l  +Q  q )  =  ( s  +Q  q ) )
2928breq1d 3802 . . . . . . . 8  |-  ( l  =  s  ->  (
( l  +Q  q
)  <Q  ( F `  q )  <->  ( s  +Q  q )  <Q  ( F `  q )
) )
3029rexbidv 2344 . . . . . . 7  |-  ( l  =  s  ->  ( E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q )  <->  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
) )
31 cauappcvgpr.lim . . . . . . . . 9  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
3231fveq2i 5209 . . . . . . . 8  |-  ( 1st `  L )  =  ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >. )
33 nqex 6519 . . . . . . . . . 10  |-  Q.  e.  _V
3433rabex 3929 . . . . . . . . 9  |-  { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) }  e.  _V
3533rabex 3929 . . . . . . . . 9  |-  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u }  e.  _V
3634, 35op1st 5801 . . . . . . . 8  |-  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u } >. )  =  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) }
3732, 36eqtri 2076 . . . . . . 7  |-  ( 1st `  L )  =  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) }
3830, 37elrab2 2723 . . . . . 6  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
) )
3913, 27, 38sylanbrc 402 . . . . 5  |-  ( ( ( ph  /\  s  e.  Q. )  /\  (
s  +Q  s )  =  A )  -> 
s  e.  ( 1st `  L ) )
4039ex 112 . . . 4  |-  ( (
ph  /\  s  e.  Q. )  ->  ( ( s  +Q  s )  =  A  ->  s  e.  ( 1st `  L
) ) )
4140reximdva 2438 . . 3  |-  ( ph  ->  ( E. s  e. 
Q.  ( s  +Q  s )  =  A  ->  E. s  e.  Q.  s  e.  ( 1st `  L ) ) )
4212, 41mpd 13 . 2  |-  ( ph  ->  E. s  e.  Q.  s  e.  ( 1st `  L ) )
43 cauappcvgpr.f . . . . . 6  |-  ( ph  ->  F : Q. --> Q. )
441a1i 9 . . . . . 6  |-  ( ph  ->  1Q  e.  Q. )
4543, 44ffvelrnd 5331 . . . . 5  |-  ( ph  ->  ( F `  1Q )  e.  Q. )
46 addclnq 6531 . . . . 5  |-  ( ( ( F `  1Q )  e.  Q.  /\  1Q  e.  Q. )  ->  (
( F `  1Q )  +Q  1Q )  e. 
Q. )
4745, 44, 46syl2anc 397 . . . 4  |-  ( ph  ->  ( ( F `  1Q )  +Q  1Q )  e.  Q. )
48 addclnq 6531 . . . 4  |-  ( ( ( ( F `  1Q )  +Q  1Q )  e.  Q.  /\  1Q  e.  Q. )  ->  (
( ( F `  1Q )  +Q  1Q )  +Q  1Q )  e. 
Q. )
4947, 44, 48syl2anc 397 . . 3  |-  ( ph  ->  ( ( ( F `
 1Q )  +Q  1Q )  +Q  1Q )  e.  Q. )
50 ltaddnq 6563 . . . . . 6  |-  ( ( ( ( F `  1Q )  +Q  1Q )  e.  Q.  /\  1Q  e.  Q. )  ->  (
( F `  1Q )  +Q  1Q )  <Q 
( ( ( F `
 1Q )  +Q  1Q )  +Q  1Q ) )
5147, 44, 50syl2anc 397 . . . . 5  |-  ( ph  ->  ( ( F `  1Q )  +Q  1Q )  <Q  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q ) )
52 fveq2 5206 . . . . . . . 8  |-  ( q  =  1Q  ->  ( F `  q )  =  ( F `  1Q ) )
53 id 19 . . . . . . . 8  |-  ( q  =  1Q  ->  q  =  1Q )
5452, 53oveq12d 5558 . . . . . . 7  |-  ( q  =  1Q  ->  (
( F `  q
)  +Q  q )  =  ( ( F `
 1Q )  +Q  1Q ) )
5554breq1d 3802 . . . . . 6  |-  ( q  =  1Q  ->  (
( ( F `  q )  +Q  q
)  <Q  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q )  <->  ( ( F `  1Q )  +Q  1Q )  <Q  (
( ( F `  1Q )  +Q  1Q )  +Q  1Q ) ) )
5655rspcev 2673 . . . . 5  |-  ( ( 1Q  e.  Q.  /\  ( ( F `  1Q )  +Q  1Q )  <Q  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q ) )  ->  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q ) )
5744, 51, 56syl2anc 397 . . . 4  |-  ( ph  ->  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q ) )
58 breq2 3796 . . . . . 6  |-  ( u  =  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q )  ->  (
( ( F `  q )  +Q  q
)  <Q  u  <->  ( ( F `  q )  +Q  q )  <Q  (
( ( F `  1Q )  +Q  1Q )  +Q  1Q ) ) )
5958rexbidv 2344 . . . . 5  |-  ( u  =  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q )  ->  ( E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u  <->  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  (
( ( F `  1Q )  +Q  1Q )  +Q  1Q ) ) )
6031fveq2i 5209 . . . . . 6  |-  ( 2nd `  L )  =  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >. )
6134, 35op2nd 5802 . . . . . 6  |-  ( 2nd `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u } >. )  =  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u }
6260, 61eqtri 2076 . . . . 5  |-  ( 2nd `  L )  =  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u }
6359, 62elrab2 2723 . . . 4  |-  ( ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q )  e.  ( 2nd `  L
)  <->  ( ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q )  e.  Q.  /\ 
E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q ) ) )
6449, 57, 63sylanbrc 402 . . 3  |-  ( ph  ->  ( ( ( F `
 1Q )  +Q  1Q )  +Q  1Q )  e.  ( 2nd `  L ) )
65 eleq1 2116 . . . 4  |-  ( r  =  ( ( ( F `  1Q )  +Q  1Q )  +Q  1Q )  ->  (
r  e.  ( 2nd `  L )  <->  ( (
( F `  1Q )  +Q  1Q )  +Q  1Q )  e.  ( 2nd `  L ) ) )
6665rspcev 2673 . . 3  |-  ( ( ( ( ( F `
 1Q )  +Q  1Q )  +Q  1Q )  e.  Q.  /\  (
( ( F `  1Q )  +Q  1Q )  +Q  1Q )  e.  ( 2nd `  L
) )  ->  E. r  e.  Q.  r  e.  ( 2nd `  L ) )
6749, 64, 66syl2anc 397 . 2  |-  ( ph  ->  E. r  e.  Q.  r  e.  ( 2nd `  L ) )
6842, 67jca 294 1  |-  ( ph  ->  ( E. s  e. 
Q.  s  e.  ( 1st `  L )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  L ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    = wceq 1259    e. wcel 1409   A.wral 2323   E.wrex 2324   {crab 2327   <.cop 3406   class class class wbr 3792   -->wf 4926   ` cfv 4930  (class class class)co 5540   1stc1st 5793   2ndc2nd 5794   Q.cnq 6436   1Qc1q 6437    +Q cplq 6438    <Q cltq 6441
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509
This theorem is referenced by:  cauappcvgprlemcl  6809
  Copyright terms: Public domain W3C validator