ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemopl Unicode version

Theorem cauappcvgprlemopl 7454
Description: Lemma for cauappcvgpr 7470. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 4-Aug-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f  |-  ( ph  ->  F : Q. --> Q. )
cauappcvgpr.app  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
cauappcvgpr.bnd  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
cauappcvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
Assertion
Ref Expression
cauappcvgprlemopl  |-  ( (
ph  /\  s  e.  ( 1st `  L ) )  ->  E. r  e.  Q.  ( s  <Q 
r  /\  r  e.  ( 1st `  L ) ) )
Distinct variable groups:    A, p    L, p, q    ph, p, q    L, r, s    A, s, p    F, l, u, p, q, r, s    ph, r,
s
Allowed substitution hints:    ph( u, l)    A( u, r, q, l)    L( u, l)

Proof of Theorem cauappcvgprlemopl
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 oveq1 5781 . . . . . . 7  |-  ( l  =  s  ->  (
l  +Q  q )  =  ( s  +Q  q ) )
21breq1d 3939 . . . . . 6  |-  ( l  =  s  ->  (
( l  +Q  q
)  <Q  ( F `  q )  <->  ( s  +Q  q )  <Q  ( F `  q )
) )
32rexbidv 2438 . . . . 5  |-  ( l  =  s  ->  ( E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q )  <->  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
) )
4 cauappcvgpr.lim . . . . . . 7  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
54fveq2i 5424 . . . . . 6  |-  ( 1st `  L )  =  ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >. )
6 nqex 7171 . . . . . . . 8  |-  Q.  e.  _V
76rabex 4072 . . . . . . 7  |-  { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) }  e.  _V
86rabex 4072 . . . . . . 7  |-  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u }  e.  _V
97, 8op1st 6044 . . . . . 6  |-  ( 1st `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u } >. )  =  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) }
105, 9eqtri 2160 . . . . 5  |-  ( 1st `  L )  =  {
l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) }
113, 10elrab2 2843 . . . 4  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
) )
1211simprbi 273 . . 3  |-  ( s  e.  ( 1st `  L
)  ->  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
)
1312adantl 275 . 2  |-  ( (
ph  /\  s  e.  ( 1st `  L ) )  ->  E. q  e.  Q.  ( s  +Q  q )  <Q  ( F `  q )
)
14 simprr 521 . . . 4  |-  ( ( ( ph  /\  s  e.  ( 1st `  L
) )  /\  (
q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  ->  ( s  +Q  q )  <Q  ( F `  q )
)
15 ltbtwnnqq 7223 . . . 4  |-  ( ( s  +Q  q ) 
<Q  ( F `  q
)  <->  E. t  e.  Q.  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) )
1614, 15sylib 121 . . 3  |-  ( ( ( ph  /\  s  e.  ( 1st `  L
) )  /\  (
q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  ->  E. t  e.  Q.  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) )
17 simplrl 524 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  q  e.  Q. )
1811simplbi 272 . . . . . . . . 9  |-  ( s  e.  ( 1st `  L
)  ->  s  e.  Q. )
1918ad3antlr 484 . . . . . . . 8  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  s  e.  Q. )
20 ltaddnq 7215 . . . . . . . 8  |-  ( ( q  e.  Q.  /\  s  e.  Q. )  ->  q  <Q  ( q  +Q  s ) )
2117, 19, 20syl2anc 408 . . . . . . 7  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  q  <Q  (
q  +Q  s ) )
22 addcomnqg 7189 . . . . . . . 8  |-  ( ( q  e.  Q.  /\  s  e.  Q. )  ->  ( q  +Q  s
)  =  ( s  +Q  q ) )
2317, 19, 22syl2anc 408 . . . . . . 7  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  ( q  +Q  s )  =  ( s  +Q  q ) )
2421, 23breqtrd 3954 . . . . . 6  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  q  <Q  (
s  +Q  q ) )
25 simprrl 528 . . . . . 6  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  ( s  +Q  q )  <Q  t
)
26 ltsonq 7206 . . . . . . 7  |-  <Q  Or  Q.
27 ltrelnq 7173 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
2826, 27sotri 4934 . . . . . 6  |-  ( ( q  <Q  ( s  +Q  q )  /\  (
s  +Q  q ) 
<Q  t )  ->  q  <Q  t )
2924, 25, 28syl2anc 408 . . . . 5  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  q  <Q  t
)
30 simprl 520 . . . . . 6  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  t  e.  Q. )
31 ltexnqq 7216 . . . . . 6  |-  ( ( q  e.  Q.  /\  t  e.  Q. )  ->  ( q  <Q  t  <->  E. r  e.  Q.  (
q  +Q  r )  =  t ) )
3217, 30, 31syl2anc 408 . . . . 5  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  ( q  <Q 
t  <->  E. r  e.  Q.  ( q  +Q  r
)  =  t ) )
3329, 32mpbid 146 . . . 4  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  E. r  e.  Q.  ( q  +Q  r
)  =  t )
3425ad2antrr 479 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( s  +Q  q
)  <Q  t )
3519ad2antrr 479 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
s  e.  Q. )
3617ad2antrr 479 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
q  e.  Q. )
37 addcomnqg 7189 . . . . . . . . . . . 12  |-  ( ( s  e.  Q.  /\  q  e.  Q. )  ->  ( s  +Q  q
)  =  ( q  +Q  s ) )
3835, 36, 37syl2anc 408 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( s  +Q  q
)  =  ( q  +Q  s ) )
3938breq1d 3939 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( ( s  +Q  q )  <Q  t  <->  ( q  +Q  s ) 
<Q  t ) )
4034, 39mpbid 146 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( q  +Q  s
)  <Q  t )
41 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( q  +Q  r
)  =  t )
4240, 41breqtrrd 3956 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( q  +Q  s
)  <Q  ( q  +Q  r ) )
43 simplr 519 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
r  e.  Q. )
44 ltanqg 7208 . . . . . . . . 9  |-  ( ( s  e.  Q.  /\  r  e.  Q.  /\  q  e.  Q. )  ->  (
s  <Q  r  <->  ( q  +Q  s )  <Q  (
q  +Q  r ) ) )
4535, 43, 36, 44syl3anc 1216 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( s  <Q  r  <->  ( q  +Q  s ) 
<Q  ( q  +Q  r
) ) )
4642, 45mpbird 166 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
s  <Q  r )
47 simprrr 529 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  t  <Q  ( F `  q )
)
4847ad2antrr 479 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
t  <Q  ( F `  q ) )
49 addcomnqg 7189 . . . . . . . . . . . . 13  |-  ( ( q  e.  Q.  /\  r  e.  Q. )  ->  ( q  +Q  r
)  =  ( r  +Q  q ) )
5036, 43, 49syl2anc 408 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( q  +Q  r
)  =  ( r  +Q  q ) )
5150, 41eqtr3d 2174 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( r  +Q  q
)  =  t )
5251breq1d 3939 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( ( r  +Q  q )  <Q  ( F `  q )  <->  t 
<Q  ( F `  q
) ) )
5348, 52mpbird 166 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( r  +Q  q
)  <Q  ( F `  q ) )
54 rspe 2481 . . . . . . . . 9  |-  ( ( q  e.  Q.  /\  ( r  +Q  q
)  <Q  ( F `  q ) )  ->  E. q  e.  Q.  ( r  +Q  q
)  <Q  ( F `  q ) )
5536, 53, 54syl2anc 408 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  ->  E. q  e.  Q.  ( r  +Q  q
)  <Q  ( F `  q ) )
56 oveq1 5781 . . . . . . . . . . 11  |-  ( l  =  r  ->  (
l  +Q  q )  =  ( r  +Q  q ) )
5756breq1d 3939 . . . . . . . . . 10  |-  ( l  =  r  ->  (
( l  +Q  q
)  <Q  ( F `  q )  <->  ( r  +Q  q )  <Q  ( F `  q )
) )
5857rexbidv 2438 . . . . . . . . 9  |-  ( l  =  r  ->  ( E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q )  <->  E. q  e.  Q.  ( r  +Q  q )  <Q  ( F `  q )
) )
5958, 10elrab2 2843 . . . . . . . 8  |-  ( r  e.  ( 1st `  L
)  <->  ( r  e. 
Q.  /\  E. q  e.  Q.  ( r  +Q  q )  <Q  ( F `  q )
) )
6043, 55, 59sylanbrc 413 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
r  e.  ( 1st `  L ) )
6146, 60jca 304 . . . . . 6  |-  ( ( ( ( ( (
ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  (
s  +Q  q ) 
<Q  ( F `  q
) ) )  /\  ( t  e.  Q.  /\  ( ( s  +Q  q )  <Q  t  /\  t  <Q  ( F `
 q ) ) ) )  /\  r  e.  Q. )  /\  (
q  +Q  r )  =  t )  -> 
( s  <Q  r  /\  r  e.  ( 1st `  L ) ) )
6261ex 114 . . . . 5  |-  ( ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  /\  r  e.  Q. )  ->  ( ( q  +Q  r )  =  t  ->  ( s  <Q  r  /\  r  e.  ( 1st `  L
) ) ) )
6362reximdva 2534 . . . 4  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  ( E. r  e.  Q.  ( q  +Q  r )  =  t  ->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) ) )
6433, 63mpd 13 . . 3  |-  ( ( ( ( ph  /\  s  e.  ( 1st `  L ) )  /\  ( q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  /\  ( t  e. 
Q.  /\  ( (
s  +Q  q ) 
<Q  t  /\  t  <Q  ( F `  q
) ) ) )  ->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) )
6516, 64rexlimddv 2554 . 2  |-  ( ( ( ph  /\  s  e.  ( 1st `  L
) )  /\  (
q  e.  Q.  /\  ( s  +Q  q
)  <Q  ( F `  q ) ) )  ->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) )
6613, 65rexlimddv 2554 1  |-  ( (
ph  /\  s  e.  ( 1st `  L ) )  ->  E. r  e.  Q.  ( s  <Q 
r  /\  r  e.  ( 1st `  L ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   {crab 2420   <.cop 3530   class class class wbr 3929   -->wf 5119   ` cfv 5123  (class class class)co 5774   1stc1st 6036   Q.cnq 7088    +Q cplq 7090    <Q cltq 7093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161
This theorem is referenced by:  cauappcvgprlemrnd  7458
  Copyright terms: Public domain W3C validator