ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemcl Unicode version

Theorem caucvgprlemcl 7477
Description: Lemma for caucvgpr 7483. The putative limit is a positive real. (Contributed by Jim Kingdon, 26-Sep-2020.)
Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgpr.bnd  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
caucvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
Assertion
Ref Expression
caucvgprlemcl  |-  ( ph  ->  L  e.  P. )
Distinct variable groups:    A, j    j, F, l    u, F, j   
n, F, k    j,
k, L    k, n
Allowed substitution hints:    ph( u, j, k, n, l)    A( u, k, n, l)    L( u, n, l)

Proof of Theorem caucvgprlemcl
Dummy variables  s  a  c  d  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgpr.f . . . 4  |-  ( ph  ->  F : N. --> Q. )
2 caucvgpr.cau . . . 4  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
3 caucvgpr.bnd . . . . 5  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
4 fveq2 5414 . . . . . . 7  |-  ( j  =  a  ->  ( F `  j )  =  ( F `  a ) )
54breq2d 3936 . . . . . 6  |-  ( j  =  a  ->  ( A  <Q  ( F `  j )  <->  A  <Q  ( F `  a ) ) )
65cbvralv 2652 . . . . 5  |-  ( A. j  e.  N.  A  <Q  ( F `  j
)  <->  A. a  e.  N.  A  <Q  ( F `  a ) )
73, 6sylib 121 . . . 4  |-  ( ph  ->  A. a  e.  N.  A  <Q  ( F `  a ) )
8 caucvgpr.lim . . . . 5  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
9 opeq1 3700 . . . . . . . . . . . . 13  |-  ( j  =  a  ->  <. j ,  1o >.  =  <. a ,  1o >. )
109eceq1d 6458 . . . . . . . . . . . 12  |-  ( j  =  a  ->  [ <. j ,  1o >. ]  ~Q  =  [ <. a ,  1o >. ]  ~Q  )
1110fveq2d 5418 . . . . . . . . . . 11  |-  ( j  =  a  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )
1211oveq2d 5783 . . . . . . . . . 10  |-  ( j  =  a  ->  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )
1312, 4breq12d 3937 . . . . . . . . 9  |-  ( j  =  a  ->  (
( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( F `  a
) ) )
1413cbvrexv 2653 . . . . . . . 8  |-  ( E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( F `  a
) )
1514a1i 9 . . . . . . 7  |-  ( l  e.  Q.  ->  ( E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( F `  a
) ) )
1615rabbiia 2666 . . . . . 6  |-  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  =  { l  e.  Q.  |  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( F `  a ) }
174, 11oveq12d 5785 . . . . . . . . . 10  |-  ( j  =  a  ->  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( ( F `  a )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )
1817breq1d 3934 . . . . . . . . 9  |-  ( j  =  a  ->  (
( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  ( ( F `  a )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q  u ) )
1918cbvrexv 2653 . . . . . . . 8  |-  ( E. j  e.  N.  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  E. a  e.  N.  ( ( F `
 a )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q  u )
2019a1i 9 . . . . . . 7  |-  ( u  e.  Q.  ->  ( E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  E. a  e.  N.  ( ( F `
 a )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q  u ) )
2120rabbiia 2666 . . . . . 6  |-  { u  e.  Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }  =  {
u  e.  Q.  |  E. a  e.  N.  ( ( F `  a )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  u }
2216, 21opeq12i 3705 . . . . 5  |-  <. { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.  = 
<. { l  e.  Q.  |  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( F `  a ) } ,  { u  e.  Q.  |  E. a  e.  N.  ( ( F `  a )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  u } >.
238, 22eqtri 2158 . . . 4  |-  L  = 
<. { l  e.  Q.  |  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( F `  a ) } ,  { u  e.  Q.  |  E. a  e.  N.  ( ( F `  a )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  u } >.
241, 2, 7, 23caucvgprlemm 7469 . . 3  |-  ( ph  ->  ( E. s  e. 
Q.  s  e.  ( 1st `  L )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  L ) ) )
25 ssrab2 3177 . . . . . 6  |-  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  C_  Q.
26 nqex 7164 . . . . . . 7  |-  Q.  e.  _V
2726elpw2 4077 . . . . . 6  |-  ( { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  e.  ~P Q.  <->  { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  C_  Q. )
2825, 27mpbir 145 . . . . 5  |-  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  e.  ~P Q.
29 ssrab2 3177 . . . . . 6  |-  { u  e.  Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }  C_  Q.
3026elpw2 4077 . . . . . 6  |-  ( { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u }  e.  ~P Q.  <->  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u }  C_  Q. )
3129, 30mpbir 145 . . . . 5  |-  { u  e.  Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }  e.  ~P Q.
32 opelxpi 4566 . . . . 5  |-  ( ( { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  e.  ~P Q.  /\  { u  e.  Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }  e.  ~P Q. )  ->  <. { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.  e.  ( ~P Q.  X.  ~P Q. ) )
3328, 31, 32mp2an 422 . . . 4  |-  <. { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.  e.  ( ~P Q.  X.  ~P Q. )
348, 33eqeltri 2210 . . 3  |-  L  e.  ( ~P Q.  X.  ~P Q. )
3524, 34jctil 310 . 2  |-  ( ph  ->  ( L  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. s  e.  Q.  s  e.  ( 1st `  L )  /\  E. r  e.  Q.  r  e.  ( 2nd `  L
) ) ) )
361, 2, 7, 23caucvgprlemrnd 7474 . . 3  |-  ( ph  ->  ( A. s  e. 
Q.  ( s  e.  ( 1st `  L
)  <->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  L
)  <->  E. s  e.  Q.  ( s  <Q  r  /\  s  e.  ( 2nd `  L ) ) ) ) )
37 breq1 3927 . . . . . . 7  |-  ( n  =  c  ->  (
n  <N  k  <->  c  <N  k ) )
38 fveq2 5414 . . . . . . . . 9  |-  ( n  =  c  ->  ( F `  n )  =  ( F `  c ) )
39 opeq1 3700 . . . . . . . . . . . 12  |-  ( n  =  c  ->  <. n ,  1o >.  =  <. c ,  1o >. )
4039eceq1d 6458 . . . . . . . . . . 11  |-  ( n  =  c  ->  [ <. n ,  1o >. ]  ~Q  =  [ <. c ,  1o >. ]  ~Q  )
4140fveq2d 5418 . . . . . . . . . 10  |-  ( n  =  c  ->  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )
4241oveq2d 5783 . . . . . . . . 9  |-  ( n  =  c  ->  (
( F `  k
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  =  ( ( F `  k )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) )
4338, 42breq12d 3937 . . . . . . . 8  |-  ( n  =  c  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  <->  ( F `  c )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) ) )
4438, 41oveq12d 5785 . . . . . . . . 9  |-  ( n  =  c  ->  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  =  ( ( F `  c )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) )
4544breq2d 3936 . . . . . . . 8  |-  ( n  =  c  ->  (
( F `  k
)  <Q  ( ( F `
 n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  <->  ( F `  k )  <Q  (
( F `  c
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) ) )
4643, 45anbi12d 464 . . . . . . 7  |-  ( n  =  c  ->  (
( ( F `  n )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) )  <->  ( ( F `  c )  <Q  ( ( F `  k )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  c
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) ) ) )
4737, 46imbi12d 233 . . . . . 6  |-  ( n  =  c  ->  (
( n  <N  k  ->  ( ( F `  n )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) ) )  <->  ( c  <N  k  ->  ( ( F `  c )  <Q  ( ( F `  k )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  c
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) ) ) ) )
48 breq2 3928 . . . . . . 7  |-  ( k  =  d  ->  (
c  <N  k  <->  c  <N  d ) )
49 fveq2 5414 . . . . . . . . . 10  |-  ( k  =  d  ->  ( F `  k )  =  ( F `  d ) )
5049oveq1d 5782 . . . . . . . . 9  |-  ( k  =  d  ->  (
( F `  k
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
)  =  ( ( F `  d )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) )
5150breq2d 3936 . . . . . . . 8  |-  ( k  =  d  ->  (
( F `  c
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )  <->  ( F `  c )  <Q  (
( F `  d
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) ) )
5249breq1d 3934 . . . . . . . 8  |-  ( k  =  d  ->  (
( F `  k
)  <Q  ( ( F `
 c )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )  <->  ( F `  d )  <Q  (
( F `  c
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) ) )
5351, 52anbi12d 464 . . . . . . 7  |-  ( k  =  d  ->  (
( ( F `  c )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  c
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) )  <->  ( ( F `  c )  <Q  ( ( F `  d )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
)  /\  ( F `  d )  <Q  (
( F `  c
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) ) ) )
5448, 53imbi12d 233 . . . . . 6  |-  ( k  =  d  ->  (
( c  <N  k  ->  ( ( F `  c )  <Q  (
( F `  k
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  c
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) ) )  <->  ( c  <N  d  ->  ( ( F `  c )  <Q  ( ( F `  d )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
)  /\  ( F `  d )  <Q  (
( F `  c
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) ) ) ) )
5547, 54cbvral2v 2660 . . . . 5  |-  ( A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  ( ( F `
 n )  <Q 
( ( F `  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) ) )  <->  A. c  e.  N.  A. d  e. 
N.  ( c  <N 
d  ->  ( ( F `  c )  <Q  ( ( F `  d )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
)  /\  ( F `  d )  <Q  (
( F `  c
)  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) ) ) )
562, 55sylib 121 . . . 4  |-  ( ph  ->  A. c  e.  N.  A. d  e.  N.  (
c  <N  d  ->  (
( F `  c
)  <Q  ( ( F `
 d )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )  /\  ( F `  d ) 
<Q  ( ( F `  c )  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
) ) ) )
571, 56, 7, 23caucvgprlemdisj 7475 . . 3  |-  ( ph  ->  A. s  e.  Q.  -.  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )
581, 2, 7, 23caucvgprlemloc 7476 . . 3  |-  ( ph  ->  A. s  e.  Q.  A. r  e.  Q.  (
s  <Q  r  ->  (
s  e.  ( 1st `  L )  \/  r  e.  ( 2nd `  L
) ) ) )
5936, 57, 583jca 1161 . 2  |-  ( ph  ->  ( ( A. s  e.  Q.  ( s  e.  ( 1st `  L
)  <->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  L
)  <->  E. s  e.  Q.  ( s  <Q  r  /\  s  e.  ( 2nd `  L ) ) ) )  /\  A. s  e.  Q.  -.  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) )  /\  A. s  e.  Q.  A. r  e.  Q.  ( s  <Q 
r  ->  ( s  e.  ( 1st `  L
)  \/  r  e.  ( 2nd `  L
) ) ) ) )
60 elnp1st2nd 7277 . 2  |-  ( L  e.  P.  <->  ( ( L  e.  ( ~P Q.  X.  ~P Q. )  /\  ( E. s  e. 
Q.  s  e.  ( 1st `  L )  /\  E. r  e. 
Q.  r  e.  ( 2nd `  L ) ) )  /\  (
( A. s  e. 
Q.  ( s  e.  ( 1st `  L
)  <->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) )  /\  A. r  e.  Q.  ( r  e.  ( 2nd `  L
)  <->  E. s  e.  Q.  ( s  <Q  r  /\  s  e.  ( 2nd `  L ) ) ) )  /\  A. s  e.  Q.  -.  (
s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L
) )  /\  A. s  e.  Q.  A. r  e.  Q.  ( s  <Q 
r  ->  ( s  e.  ( 1st `  L
)  \/  r  e.  ( 2nd `  L
) ) ) ) ) )
6135, 59, 60sylanbrc 413 1  |-  ( ph  ->  L  e.  P. )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    /\ w3a 962    = wceq 1331    e. wcel 1480   A.wral 2414   E.wrex 2415   {crab 2418    C_ wss 3066   ~Pcpw 3505   <.cop 3525   class class class wbr 3924    X. cxp 4532   -->wf 5114   ` cfv 5118  (class class class)co 5767   1stc1st 6029   2ndc2nd 6030   1oc1o 6299   [cec 6420   N.cnpi 7073    <N clti 7076    ~Q ceq 7080   Q.cnq 7081    +Q cplq 7083   *Qcrq 7085    <Q cltq 7086   P.cnp 7092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-eprel 4206  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-1o 6306  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-pli 7106  df-mi 7107  df-lti 7108  df-plpq 7145  df-mpq 7146  df-enq 7148  df-nqqs 7149  df-plqqs 7150  df-mqqs 7151  df-1nqqs 7152  df-rq 7153  df-ltnqqs 7154  df-inp 7267
This theorem is referenced by:  caucvgprlemladdfu  7478  caucvgprlemladdrl  7479  caucvgprlem1  7480  caucvgprlem2  7481  caucvgpr  7483
  Copyright terms: Public domain W3C validator