ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemladdrl Unicode version

Theorem caucvgprlemladdrl 7486
Description: Lemma for caucvgpr 7490. Adding  S after embedding in positive reals, or adding it as a rational. (Contributed by Jim Kingdon, 8-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgpr.bnd  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
caucvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
caucvgprlemladd.s  |-  ( ph  ->  S  e.  Q. )
Assertion
Ref Expression
caucvgprlemladdrl  |-  ( ph  ->  { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  S ) }  C_  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )
Distinct variable groups:    A, j    j, F, u, l    n, F, k    k, L, j    S, l, u, j    j,
k, S
Allowed substitution hints:    ph( u, j, k, n, l)    A( u, k, n, l)    S( n)    L( u, n, l)

Proof of Theorem caucvgprlemladdrl
Dummy variables  r  f  g  h  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3705 . . . . . . . . 9  |-  ( j  =  a  ->  <. j ,  1o >.  =  <. a ,  1o >. )
21eceq1d 6465 . . . . . . . 8  |-  ( j  =  a  ->  [ <. j ,  1o >. ]  ~Q  =  [ <. a ,  1o >. ]  ~Q  )
32fveq2d 5425 . . . . . . 7  |-  ( j  =  a  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )
43oveq2d 5790 . . . . . 6  |-  ( j  =  a  ->  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )
5 fveq2 5421 . . . . . . 7  |-  ( j  =  a  ->  ( F `  j )  =  ( F `  a ) )
65oveq1d 5789 . . . . . 6  |-  ( j  =  a  ->  (
( F `  j
)  +Q  S )  =  ( ( F `
 a )  +Q  S ) )
74, 6breq12d 3942 . . . . 5  |-  ( j  =  a  ->  (
( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  S )  <->  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) ) )
87cbvrexv 2655 . . . 4  |-  ( E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  S )  <->  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )
98a1i 9 . . 3  |-  ( l  e.  Q.  ->  ( E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  S )  <->  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) ) )
109rabbiia 2671 . 2  |-  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  S ) }  =  { l  e.  Q.  |  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 a )  +Q  S ) }
11 oveq1 5781 . . . . . . 7  |-  ( l  =  r  ->  (
l  +Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )
)  =  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )
1211breq1d 3939 . . . . . 6  |-  ( l  =  r  ->  (
( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 a )  +Q  S )  <->  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) ) )
1312rexbidv 2438 . . . . 5  |-  ( l  =  r  ->  ( E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 a )  +Q  S )  <->  E. a  e.  N.  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) ) )
1413elrab 2840 . . . 4  |-  ( r  e.  { l  e. 
Q.  |  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) }  <->  ( r  e.  Q.  /\  E. a  e.  N.  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) ) )
15 caucvgpr.f . . . . . . . . . . . . . . 15  |-  ( ph  ->  F : N. --> Q. )
1615ad4antr 485 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  F : N. --> Q. )
17 caucvgpr.cau . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
1817ad4antr 485 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  A. n  e.  N.  A. k  e. 
N.  ( n  <N  k  ->  ( ( F `
 n )  <Q 
( ( F `  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
19 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  b  e.  N. )
20 simpllr 523 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  a  e.  N. )
2116, 18, 19, 20caucvgprlemnbj 7475 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  -.  ( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( F `  a
) )
2215ad3antrrr 483 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  F : N. --> Q. )
2322ffvelrnda 5555 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  ( F `  b )  e.  Q. )
24 nnnq 7230 . . . . . . . . . . . . . . . . . 18  |-  ( b  e.  N.  ->  [ <. b ,  1o >. ]  ~Q  e.  Q. )
25 recclnq 7200 . . . . . . . . . . . . . . . . . 18  |-  ( [
<. b ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  e.  Q. )
2619, 24, 253syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  e.  Q. )
27 addclnq 7183 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F `  b
)  e.  Q.  /\  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  e.  Q. )
2823, 26, 27syl2anc 408 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  (
( F `  b
)  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
)  e.  Q. )
29 nnnq 7230 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  N.  ->  [ <. a ,  1o >. ]  ~Q  e.  Q. )
30 recclnq 7200 . . . . . . . . . . . . . . . . 17  |-  ( [
<. a ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  e.  Q. )
3120, 29, 303syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  e.  Q. )
32 caucvgprlemladd.s . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  S  e.  Q. )
3332ad4antr 485 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  S  e.  Q. )
34 addassnqg 7190 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  e.  Q.  /\  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  e.  Q.  /\  S  e.  Q. )  ->  (
( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  +Q  S )  =  ( ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  +Q  ( ( *Q `  [ <. a ,  1o >. ]  ~Q  )  +Q  S ) ) )
3528, 31, 33, 34syl3anc 1216 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  (
( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  +Q  S )  =  ( ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  +Q  ( ( *Q `  [ <. a ,  1o >. ]  ~Q  )  +Q  S ) ) )
3635breq1d 3939 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  (
( ( ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  +Q  S )  <Q 
( ( F `  a )  +Q  S
)  <->  ( ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( ( *Q
`  [ <. a ,  1o >. ]  ~Q  )  +Q  S ) )  <Q 
( ( F `  a )  +Q  S
) ) )
37 ltanqg 7208 . . . . . . . . . . . . . . . 16  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
3837adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  (
r  +Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 a )  +Q  S ) )  /\  b  e.  N. )  /\  ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )
)  ->  ( f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
39 addclnq 7183 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  e.  Q.  /\  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  e. 
Q. )
4028, 31, 39syl2anc 408 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  (
( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )
)  e.  Q. )
4116, 20ffvelrnd 5556 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  ( F `  a )  e.  Q. )
42 addcomnqg 7189 . . . . . . . . . . . . . . . 16  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
4342adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  (
r  +Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 a )  +Q  S ) )  /\  b  e.  N. )  /\  ( f  e.  Q.  /\  g  e.  Q. )
)  ->  ( f  +Q  g )  =  ( g  +Q  f ) )
4438, 40, 41, 33, 43caovord2d 5940 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  (
( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( F `  a
)  <->  ( ( ( ( F `  b
)  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )
)  +Q  S ) 
<Q  ( ( F `  a )  +Q  S
) ) )
45 addcomnqg 7189 . . . . . . . . . . . . . . . . 17  |-  ( ( S  e.  Q.  /\  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  =  ( ( *Q `  [ <. a ,  1o >. ]  ~Q  )  +Q  S ) )
4633, 31, 45syl2anc 408 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  =  ( ( *Q
`  [ <. a ,  1o >. ]  ~Q  )  +Q  S ) )
4746oveq2d 5790 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  (
( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )  =  ( ( ( F `  b
)  +Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )
)  +Q  ( ( *Q `  [ <. a ,  1o >. ]  ~Q  )  +Q  S ) ) )
4847breq1d 3939 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  (
( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) )  <Q  (
( F `  a
)  +Q  S )  <-> 
( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( ( *Q `  [ <. a ,  1o >. ]  ~Q  )  +Q  S ) )  <Q 
( ( F `  a )  +Q  S
) ) )
4936, 44, 483bitr4rd 220 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  (
( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) )  <Q  (
( F `  a
)  +Q  S )  <-> 
( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( F `  a
) ) )
5021, 49mtbird 662 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  /\  b  e.  N. )  ->  -.  ( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) )  <Q  (
( F `  a
)  +Q  S ) )
5150nrexdv 2525 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  -.  E. b  e.  N.  (
( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )  <Q  ( ( F `  a )  +Q  S ) )
5251intnand 916 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  -.  ( ( ( F `
 a )  +Q  S )  e.  Q.  /\ 
E. b  e.  N.  ( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) )  <Q  (
( F `  a
)  +Q  S ) ) )
5317ad3antrrr 483 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  A. n  e.  N.  A. k  e. 
N.  ( n  <N  k  ->  ( ( F `
 n )  <Q 
( ( F `  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
54 caucvgpr.bnd . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
55 fveq2 5421 . . . . . . . . . . . . . . . . 17  |-  ( j  =  b  ->  ( F `  j )  =  ( F `  b ) )
5655breq2d 3941 . . . . . . . . . . . . . . . 16  |-  ( j  =  b  ->  ( A  <Q  ( F `  j )  <->  A  <Q  ( F `  b ) ) )
5756cbvralv 2654 . . . . . . . . . . . . . . 15  |-  ( A. j  e.  N.  A  <Q  ( F `  j
)  <->  A. b  e.  N.  A  <Q  ( F `  b ) )
5854, 57sylib 121 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. b  e.  N.  A  <Q  ( F `  b ) )
5958ad3antrrr 483 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  A. b  e.  N.  A  <Q  ( F `  b )
)
60 caucvgpr.lim . . . . . . . . . . . . . 14  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
61 opeq1 3705 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( j  =  b  ->  <. j ,  1o >.  =  <. b ,  1o >. )
6261eceq1d 6465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  =  b  ->  [ <. j ,  1o >. ]  ~Q  =  [ <. b ,  1o >. ]  ~Q  )
6362fveq2d 5425 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  =  b  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )
6463oveq2d 5790 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  b  ->  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( l  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) )
6564, 55breq12d 3942 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  b  ->  (
( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  ( l  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
( F `  b
) ) )
6665cbvrexv 2655 . . . . . . . . . . . . . . . . 17  |-  ( E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  E. b  e.  N.  ( l  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
( F `  b
) )
6766a1i 9 . . . . . . . . . . . . . . . 16  |-  ( l  e.  Q.  ->  ( E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  E. b  e.  N.  ( l  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q 
( F `  b
) ) )
6867rabbiia 2671 . . . . . . . . . . . . . . 15  |-  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  =  { l  e.  Q.  |  E. b  e.  N.  ( l  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  ( F `  b ) }
6955, 63oveq12d 5792 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  b  ->  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) )
7069breq1d 3939 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  b  ->  (
( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q  u ) )
7170cbvrexv 2655 . . . . . . . . . . . . . . . . 17  |-  ( E. j  e.  N.  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  E. b  e.  N.  ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q  u )
7271a1i 9 . . . . . . . . . . . . . . . 16  |-  ( u  e.  Q.  ->  ( E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  E. b  e.  N.  ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q  u ) )
7372rabbiia 2671 . . . . . . . . . . . . . . 15  |-  { u  e.  Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }  =  {
u  e.  Q.  |  E. b  e.  N.  ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  u }
7468, 73opeq12i 3710 . . . . . . . . . . . . . 14  |-  <. { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.  = 
<. { l  e.  Q.  |  E. b  e.  N.  ( l  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  ( F `  b ) } ,  { u  e.  Q.  |  E. b  e.  N.  ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  u } >.
7560, 74eqtri 2160 . . . . . . . . . . . . 13  |-  L  = 
<. { l  e.  Q.  |  E. b  e.  N.  ( l  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  ( F `  b ) } ,  { u  e.  Q.  |  E. b  e.  N.  ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  <Q  u } >.
7632ad3antrrr 483 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  S  e.  Q. )
7729, 30syl 14 . . . . . . . . . . . . . . 15  |-  ( a  e.  N.  ->  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  e.  Q. )
7877ad2antlr 480 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  e.  Q. )
79 addclnq 7183 . . . . . . . . . . . . . 14  |-  ( ( S  e.  Q.  /\  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  e.  Q. )
8076, 78, 79syl2anc 408 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  e.  Q. )
8122, 53, 59, 75, 80caucvgprlemladdfu 7485 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  ( 2nd `  ( L  +P.  <. { l  |  l 
<Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )
)  C_  { u  e.  Q.  |  E. b  e.  N.  ( ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )  <Q  u } )
8281sseld 3096 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  (
( ( F `  a )  +Q  S
)  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )
)  ->  ( ( F `  a )  +Q  S )  e.  {
u  e.  Q.  |  E. b  e.  N.  ( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) )  <Q  u } ) )
83 breq2 3933 . . . . . . . . . . . . 13  |-  ( u  =  ( ( F `
 a )  +Q  S )  ->  (
( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) )  <Q  u  <->  ( ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )  <Q  ( ( F `  a )  +Q  S ) ) )
8483rexbidv 2438 . . . . . . . . . . . 12  |-  ( u  =  ( ( F `
 a )  +Q  S )  ->  ( E. b  e.  N.  ( ( ( F `
 b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) )  <Q  u  <->  E. b  e.  N.  (
( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )  <Q  ( ( F `  a )  +Q  S ) ) )
8584elrab 2840 . . . . . . . . . . 11  |-  ( ( ( F `  a
)  +Q  S )  e.  { u  e. 
Q.  |  E. b  e.  N.  ( ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )  <Q  u }  <->  ( ( ( F `  a )  +Q  S )  e. 
Q.  /\  E. b  e.  N.  ( ( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )  <Q 
( ( F `  a )  +Q  S
) ) )
8682, 85syl6ib 160 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  (
( ( F `  a )  +Q  S
)  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )
)  ->  ( (
( F `  a
)  +Q  S )  e.  Q.  /\  E. b  e.  N.  (
( ( F `  b )  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
)  +Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) )  <Q  ( ( F `  a )  +Q  S ) ) ) )
8752, 86mtod 652 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  -.  ( ( F `  a )  +Q  S
)  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )
) )
8815, 17, 54, 60caucvgprlemcl 7484 . . . . . . . . . . . 12  |-  ( ph  ->  L  e.  P. )
8988ad3antrrr 483 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  L  e.  P. )
90 nqprlu 7355 . . . . . . . . . . . 12  |-  ( ( S  +Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )
)  e.  Q.  ->  <. { l  |  l 
<Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >.  e.  P. )
9180, 90syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q  u } >.  e.  P. )
92 addclpr 7345 . . . . . . . . . . 11  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >.  e.  P. )  ->  ( L  +P.  <. { l  |  l 
<Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )  e.  P. )
9389, 91, 92syl2anc 408 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  u } >. )  e.  P. )
94 prop 7283 . . . . . . . . . . 11  |-  ( ( L  +P.  <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q  u } >. )  e.  P.  -> 
<. ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  u } >. ) ) ,  ( 2nd `  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )
) >.  e.  P. )
95 prloc 7299 . . . . . . . . . . 11  |-  ( (
<. ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  u } >. ) ) ,  ( 2nd `  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )
) >.  e.  P.  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 a )  +Q  S ) )  -> 
( ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  u } >. ) )  \/  ( ( F `  a )  +Q  S )  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  u } >. ) ) ) )
9694, 95sylan 281 . . . . . . . . . 10  |-  ( ( ( L  +P.  <. { l  |  l  <Q 
( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )  e.  P.  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  ( ( F `  a )  +Q  S
) )  ->  (
( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )
)  \/  ( ( F `  a )  +Q  S )  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  u } >. ) ) ) )
9793, 96sylancom 416 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  (
( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )
)  \/  ( ( F `  a )  +Q  S )  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  u } >. ) ) ) )
9887, 97ecased 1327 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  (
r  +Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )
)  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )
) )
99 simpllr 523 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  r  e.  Q. )
10089, 76, 99, 78caucvgprlemcanl 7452 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  (
( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q 
( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( S  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  u } >. )
)  <->  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ) )
10198, 100mpbid 146 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  /\  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )
102101ex 114 . . . . . 6  |-  ( ( ( ph  /\  r  e.  Q. )  /\  a  e.  N. )  ->  (
( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 a )  +Q  S )  ->  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ) )
103102rexlimdva 2549 . . . . 5  |-  ( (
ph  /\  r  e.  Q. )  ->  ( E. a  e.  N.  (
r  +Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 a )  +Q  S )  ->  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ) )
104103expimpd 360 . . . 4  |-  ( ph  ->  ( ( r  e. 
Q.  /\  E. a  e.  N.  ( r  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  a )  +Q  S
) )  ->  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ) )
10514, 104syl5bi 151 . . 3  |-  ( ph  ->  ( r  e.  {
l  e.  Q.  |  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 a )  +Q  S ) }  ->  r  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) ) )
106105ssrdv 3103 . 2  |-  ( ph  ->  { l  e.  Q.  |  E. a  e.  N.  ( l  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 a )  +Q  S ) }  C_  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )
10710, 106eqsstrid 3143 1  |-  ( ph  ->  { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 j )  +Q  S ) }  C_  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    /\ w3a 962    = wceq 1331    e. wcel 1480   {cab 2125   A.wral 2416   E.wrex 2417   {crab 2420    C_ wss 3071   <.cop 3530   class class class wbr 3929   -->wf 5119   ` cfv 5123  (class class class)co 5774   1stc1st 6036   2ndc2nd 6037   1oc1o 6306   [cec 6427   N.cnpi 7080    <N clti 7083    ~Q ceq 7087   Q.cnq 7088    +Q cplq 7090   *Qcrq 7092    <Q cltq 7093   P.cnp 7099    +P. cpp 7101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-enq0 7232  df-nq0 7233  df-0nq0 7234  df-plq0 7235  df-mq0 7236  df-inp 7274  df-iplp 7276  df-iltp 7278
This theorem is referenced by:  caucvgprlem1  7487
  Copyright terms: Public domain W3C validator