ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemopu Unicode version

Theorem caucvgprlemopu 7472
Description: Lemma for caucvgpr 7483. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 20-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgpr.bnd  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
caucvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
Assertion
Ref Expression
caucvgprlemopu  |-  ( (
ph  /\  r  e.  ( 2nd `  L ) )  ->  E. s  e.  Q.  ( s  <Q 
r  /\  s  e.  ( 2nd `  L ) ) )
Distinct variable groups:    A, j    F, l, r, s    u, F   
j, L, r, s   
j, l, s    ph, j,
r, s    u, j,
r, s
Allowed substitution hints:    ph( u, k, n, l)    A( u, k, n, s, r, l)    F( j, k, n)    L( u, k, n, l)

Proof of Theorem caucvgprlemopu
StepHypRef Expression
1 breq2 3928 . . . . . 6  |-  ( u  =  r  ->  (
( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
r ) )
21rexbidv 2436 . . . . 5  |-  ( u  =  r  ->  ( E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
r ) )
3 caucvgpr.lim . . . . . . 7  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
43fveq2i 5417 . . . . . 6  |-  ( 2nd `  L )  =  ( 2nd `  <. { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )
5 nqex 7164 . . . . . . . 8  |-  Q.  e.  _V
65rabex 4067 . . . . . . 7  |-  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  e.  _V
75rabex 4067 . . . . . . 7  |-  { u  e.  Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }  e.  _V
86, 7op2nd 6038 . . . . . 6  |-  ( 2nd `  <. { l  e. 
Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) } ,  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )  =  { u  e. 
Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }
94, 8eqtri 2158 . . . . 5  |-  ( 2nd `  L )  =  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u }
102, 9elrab2 2838 . . . 4  |-  ( r  e.  ( 2nd `  L
)  <->  ( r  e. 
Q.  /\  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
r ) )
1110simprbi 273 . . 3  |-  ( r  e.  ( 2nd `  L
)  ->  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
r )
1211adantl 275 . 2  |-  ( (
ph  /\  r  e.  ( 2nd `  L ) )  ->  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
r )
13 simprr 521 . . . 4  |-  ( ( ( ph  /\  r  e.  ( 2nd `  L
) )  /\  (
j  e.  N.  /\  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r ) )  ->  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
r )
14 ltbtwnnqq 7216 . . . 4  |-  ( ( ( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r  <->  E. s  e.  Q.  ( ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) 
<Q  s  /\  s  <Q  r ) )
1513, 14sylib 121 . . 3  |-  ( ( ( ph  /\  r  e.  ( 2nd `  L
) )  /\  (
j  e.  N.  /\  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r ) )  ->  E. s  e.  Q.  ( ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
s  /\  s  <Q  r ) )
16 simprr 521 . . . . . 6  |-  ( ( ( ( ( ph  /\  r  e.  ( 2nd `  L ) )  /\  ( j  e.  N.  /\  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r ) )  /\  s  e.  Q. )  /\  ( ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) 
<Q  s  /\  s  <Q  r ) )  -> 
s  <Q  r )
17 simplr 519 . . . . . . 7  |-  ( ( ( ( ( ph  /\  r  e.  ( 2nd `  L ) )  /\  ( j  e.  N.  /\  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r ) )  /\  s  e.  Q. )  /\  ( ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) 
<Q  s  /\  s  <Q  r ) )  -> 
s  e.  Q. )
18 simplrl 524 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  L ) )  /\  ( j  e.  N.  /\  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r ) )  /\  s  e.  Q. )  ->  j  e.  N. )
1918adantr 274 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  r  e.  ( 2nd `  L ) )  /\  ( j  e.  N.  /\  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r ) )  /\  s  e.  Q. )  /\  ( ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) 
<Q  s  /\  s  <Q  r ) )  -> 
j  e.  N. )
20 simprl 520 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  r  e.  ( 2nd `  L ) )  /\  ( j  e.  N.  /\  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r ) )  /\  s  e.  Q. )  /\  ( ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) 
<Q  s  /\  s  <Q  r ) )  -> 
( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  s )
21 rspe 2479 . . . . . . . 8  |-  ( ( j  e.  N.  /\  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  s )  ->  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  s )
2219, 20, 21syl2anc 408 . . . . . . 7  |-  ( ( ( ( ( ph  /\  r  e.  ( 2nd `  L ) )  /\  ( j  e.  N.  /\  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r ) )  /\  s  e.  Q. )  /\  ( ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) 
<Q  s  /\  s  <Q  r ) )  ->  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  s )
23 breq2 3928 . . . . . . . . 9  |-  ( u  =  s  ->  (
( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
s ) )
2423rexbidv 2436 . . . . . . . 8  |-  ( u  =  s  ->  ( E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
s ) )
2524, 9elrab2 2838 . . . . . . 7  |-  ( s  e.  ( 2nd `  L
)  <->  ( s  e. 
Q.  /\  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
s ) )
2617, 22, 25sylanbrc 413 . . . . . 6  |-  ( ( ( ( ( ph  /\  r  e.  ( 2nd `  L ) )  /\  ( j  e.  N.  /\  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r ) )  /\  s  e.  Q. )  /\  ( ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) 
<Q  s  /\  s  <Q  r ) )  -> 
s  e.  ( 2nd `  L ) )
2716, 26jca 304 . . . . 5  |-  ( ( ( ( ( ph  /\  r  e.  ( 2nd `  L ) )  /\  ( j  e.  N.  /\  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r ) )  /\  s  e.  Q. )  /\  ( ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) 
<Q  s  /\  s  <Q  r ) )  -> 
( s  <Q  r  /\  s  e.  ( 2nd `  L ) ) )
2827ex 114 . . . 4  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  L ) )  /\  ( j  e.  N.  /\  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r ) )  /\  s  e.  Q. )  ->  ( ( ( ( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  s  /\  s  <Q  r )  ->  (
s  <Q  r  /\  s  e.  ( 2nd `  L
) ) ) )
2928reximdva 2532 . . 3  |-  ( ( ( ph  /\  r  e.  ( 2nd `  L
) )  /\  (
j  e.  N.  /\  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r ) )  ->  ( E. s  e.  Q.  ( ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) 
<Q  s  /\  s  <Q  r )  ->  E. s  e.  Q.  ( s  <Q 
r  /\  s  e.  ( 2nd `  L ) ) ) )
3015, 29mpd 13 . 2  |-  ( ( ( ph  /\  r  e.  ( 2nd `  L
) )  /\  (
j  e.  N.  /\  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r ) )  ->  E. s  e.  Q.  ( s  <Q  r  /\  s  e.  ( 2nd `  L ) ) )
3112, 30rexlimddv 2552 1  |-  ( (
ph  /\  r  e.  ( 2nd `  L ) )  ->  E. s  e.  Q.  ( s  <Q 
r  /\  s  e.  ( 2nd `  L ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   A.wral 2414   E.wrex 2415   {crab 2418   <.cop 3525   class class class wbr 3924   -->wf 5114   ` cfv 5118  (class class class)co 5767   2ndc2nd 6030   1oc1o 6299   [cec 6420   N.cnpi 7073    <N clti 7076    ~Q ceq 7080   Q.cnq 7081    +Q cplq 7083   *Qcrq 7085    <Q cltq 7086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-eprel 4206  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-1o 6306  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-pli 7106  df-mi 7107  df-lti 7108  df-plpq 7145  df-mpq 7146  df-enq 7148  df-nqqs 7149  df-plqqs 7150  df-mqqs 7151  df-1nqqs 7152  df-rq 7153  df-ltnqqs 7154
This theorem is referenced by:  caucvgprlemrnd  7474
  Copyright terms: Public domain W3C validator