ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemupu Unicode version

Theorem caucvgprlemupu 6913
Description: Lemma for caucvgpr 6923. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 20-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgpr.bnd  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
caucvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
Assertion
Ref Expression
caucvgprlemupu  |-  ( (
ph  /\  s  <Q  r  /\  s  e.  ( 2nd `  L ) )  ->  r  e.  ( 2nd `  L ) )
Distinct variable groups:    A, j    F, l, r, s    u, F   
j, L, r, s   
j, l, s    ph, j,
r, s    u, j,
r, s
Allowed substitution hints:    ph( u, k, n, l)    A( u, k, n, s, r, l)    F( j, k, n)    L( u, k, n, l)

Proof of Theorem caucvgprlemupu
StepHypRef Expression
1 ltrelnq 6606 . . . . 5  |-  <Q  C_  ( Q.  X.  Q. )
21brel 4412 . . . 4  |-  ( s 
<Q  r  ->  ( s  e.  Q.  /\  r  e.  Q. ) )
32simprd 112 . . 3  |-  ( s 
<Q  r  ->  r  e. 
Q. )
433ad2ant2 961 . 2  |-  ( (
ph  /\  s  <Q  r  /\  s  e.  ( 2nd `  L ) )  ->  r  e.  Q. )
5 breq2 3791 . . . . . . 7  |-  ( u  =  s  ->  (
( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
s ) )
65rexbidv 2370 . . . . . 6  |-  ( u  =  s  ->  ( E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
s ) )
7 caucvgpr.lim . . . . . . . 8  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
87fveq2i 5206 . . . . . . 7  |-  ( 2nd `  L )  =  ( 2nd `  <. { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )
9 nqex 6604 . . . . . . . . 9  |-  Q.  e.  _V
109rabex 3924 . . . . . . . 8  |-  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  e.  _V
119rabex 3924 . . . . . . . 8  |-  { u  e.  Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }  e.  _V
1210, 11op2nd 5799 . . . . . . 7  |-  ( 2nd `  <. { l  e. 
Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) } ,  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )  =  { u  e. 
Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }
138, 12eqtri 2102 . . . . . 6  |-  ( 2nd `  L )  =  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u }
146, 13elrab2 2752 . . . . 5  |-  ( s  e.  ( 2nd `  L
)  <->  ( s  e. 
Q.  /\  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
s ) )
1514simprbi 269 . . . 4  |-  ( s  e.  ( 2nd `  L
)  ->  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
s )
16153ad2ant3 962 . . 3  |-  ( (
ph  /\  s  <Q  r  /\  s  e.  ( 2nd `  L ) )  ->  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
s )
17 ltsonq 6639 . . . . . . 7  |-  <Q  Or  Q.
1817, 1sotri 4744 . . . . . 6  |-  ( ( ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  s  /\  s  <Q  r )  ->  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r )
1918expcom 114 . . . . 5  |-  ( s 
<Q  r  ->  ( ( ( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  s  ->  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r ) )
20193ad2ant2 961 . . . 4  |-  ( (
ph  /\  s  <Q  r  /\  s  e.  ( 2nd `  L ) )  ->  ( (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  s  ->  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r ) )
2120reximdv 2463 . . 3  |-  ( (
ph  /\  s  <Q  r  /\  s  e.  ( 2nd `  L ) )  ->  ( E. j  e.  N.  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  s  ->  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
r ) )
2216, 21mpd 13 . 2  |-  ( (
ph  /\  s  <Q  r  /\  s  e.  ( 2nd `  L ) )  ->  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
r )
23 breq2 3791 . . . 4  |-  ( u  =  r  ->  (
( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
r ) )
2423rexbidv 2370 . . 3  |-  ( u  =  r  ->  ( E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
r ) )
2524, 13elrab2 2752 . 2  |-  ( r  e.  ( 2nd `  L
)  <->  ( r  e. 
Q.  /\  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
r ) )
264, 22, 25sylanbrc 408 1  |-  ( (
ph  /\  s  <Q  r  /\  s  e.  ( 2nd `  L ) )  ->  r  e.  ( 2nd `  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 920    = wceq 1285    e. wcel 1434   A.wral 2349   E.wrex 2350   {crab 2353   <.cop 3403   class class class wbr 3787   -->wf 4922   ` cfv 4926  (class class class)co 5537   2ndc2nd 5791   1oc1o 6052   [cec 6163   N.cnpi 6513    <N clti 6516    ~Q ceq 6520   Q.cnq 6521    +Q cplq 6523   *Qcrq 6525    <Q cltq 6526
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3895  ax-sep 3898  ax-nul 3906  ax-pow 3950  ax-pr 3966  ax-un 4190  ax-setind 4282  ax-iinf 4331
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3253  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-int 3639  df-iun 3682  df-br 3788  df-opab 3842  df-mpt 3843  df-tr 3878  df-eprel 4046  df-id 4050  df-po 4053  df-iso 4054  df-iord 4123  df-on 4125  df-suc 4128  df-iom 4334  df-xp 4371  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-rn 4376  df-res 4377  df-ima 4378  df-iota 4891  df-fun 4928  df-fn 4929  df-f 4930  df-f1 4931  df-fo 4932  df-f1o 4933  df-fv 4934  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-1st 5792  df-2nd 5793  df-recs 5948  df-irdg 6013  df-oadd 6063  df-omul 6064  df-er 6165  df-ec 6167  df-qs 6171  df-ni 6545  df-mi 6547  df-lti 6548  df-enq 6588  df-nqqs 6589  df-ltnqqs 6594
This theorem is referenced by:  caucvgprlemrnd  6914
  Copyright terms: Public domain W3C validator