ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemlim Unicode version

Theorem caucvgprprlemlim 7519
Description: Lemma for caucvgprpr 7520. The putative limit is a limit. (Contributed by Jim Kingdon, 21-Nov-2020.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprpr.bnd  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
caucvgprpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
Assertion
Ref Expression
caucvgprprlemlim  |-  ( ph  ->  A. x  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( F `  k
)  <P  ( L  +P.  x )  /\  L  <P  ( ( F `  k )  +P.  x
) ) ) )
Distinct variable groups:    A, m    m, F    A, r, j    u, F, r, l, k, n    ph, k, r    k, L   
j, k, ph, x    k, l, u, p, q, r    j, r, x   
q, l, r    u, p, q, r    m, r   
k, n, u, l   
j, l, u    n, r
Allowed substitution hints:    ph( u, m, n, q, p, l)    A( x, u, k, n, q, p, l)    F( x, j, q, p)    L( x, u, j, m, n, r, q, p, l)

Proof of Theorem caucvgprprlemlim
StepHypRef Expression
1 archrecpr 7472 . . . 4  |-  ( x  e.  P.  ->  E. j  e.  N.  <. { l  |  l  <Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x )
21adantl 275 . . 3  |-  ( (
ph  /\  x  e.  P. )  ->  E. j  e.  N.  <. { l  |  l  <Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x )
3 caucvgprpr.f . . . . . . . . . 10  |-  ( ph  ->  F : N. --> P. )
43ad5antr 487 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q 
( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x
)  /\  k  e.  N. )  /\  j  <N  k )  ->  F : N. --> P. )
5 caucvgprpr.cau . . . . . . . . . 10  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
65ad5antr 487 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q 
( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x
)  /\  k  e.  N. )  /\  j  <N  k )  ->  A. n  e.  N.  A. k  e. 
N.  ( n  <N  k  ->  ( ( F `
 n )  <P 
( ( F `  k )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
7 caucvgprpr.bnd . . . . . . . . . 10  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
87ad5antr 487 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q 
( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x
)  /\  k  e.  N. )  /\  j  <N  k )  ->  A. m  e.  N.  A  <P  ( F `  m )
)
9 caucvgprpr.lim . . . . . . . . 9  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
10 simpr 109 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  P. )  ->  x  e. 
P. )
1110ad4antr 485 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q 
( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x
)  /\  k  e.  N. )  /\  j  <N  k )  ->  x  e.  P. )
12 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q 
( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x
)  /\  k  e.  N. )  /\  j  <N  k )  ->  j  <N  k )
13 simpllr 523 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q 
( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x
)  /\  k  e.  N. )  /\  j  <N  k )  ->  <. { l  |  l  <Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x )
144, 6, 8, 9, 11, 12, 13caucvgprprlem1 7517 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q 
( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x
)  /\  k  e.  N. )  /\  j  <N  k )  ->  ( F `  k )  <P  ( L  +P.  x
) )
154, 6, 8, 9, 11, 12, 13caucvgprprlem2 7518 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q 
( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x
)  /\  k  e.  N. )  /\  j  <N  k )  ->  L  <P  ( ( F `  k )  +P.  x
) )
1614, 15jca 304 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q 
( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x
)  /\  k  e.  N. )  /\  j  <N  k )  ->  (
( F `  k
)  <P  ( L  +P.  x )  /\  L  <P  ( ( F `  k )  +P.  x
) ) )
1716ex 114 . . . . . 6  |-  ( ( ( ( ( ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x )  /\  k  e.  N. )  ->  ( j  <N  k  ->  ( ( F `  k )  <P  ( L  +P.  x )  /\  L  <P  ( ( F `
 k )  +P.  x ) ) ) )
1817ralrimiva 2505 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x )  ->  A. k  e.  N.  ( j  <N  k  ->  ( ( F `  k )  <P  ( L  +P.  x )  /\  L  <P  ( ( F `
 k )  +P.  x ) ) ) )
1918ex 114 . . . 4  |-  ( ( ( ph  /\  x  e.  P. )  /\  j  e.  N. )  ->  ( <. { l  |  l 
<Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x  ->  A. k  e.  N.  ( j  <N  k  ->  ( ( F `  k )  <P  ( L  +P.  x )  /\  L  <P  ( ( F `
 k )  +P.  x ) ) ) ) )
2019reximdva 2534 . . 3  |-  ( (
ph  /\  x  e.  P. )  ->  ( E. j  e.  N.  <. { l  |  l  <Q 
( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x  ->  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( F `  k
)  <P  ( L  +P.  x )  /\  L  <P  ( ( F `  k )  +P.  x
) ) ) ) )
212, 20mpd 13 . 2  |-  ( (
ph  /\  x  e.  P. )  ->  E. j  e.  N.  A. k  e. 
N.  ( j  <N 
k  ->  ( ( F `  k )  <P  ( L  +P.  x
)  /\  L  <P  ( ( F `  k
)  +P.  x )
) ) )
2221ralrimiva 2505 1  |-  ( ph  ->  A. x  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( F `  k
)  <P  ( L  +P.  x )  /\  L  <P  ( ( F `  k )  +P.  x
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   {cab 2125   A.wral 2416   E.wrex 2417   {crab 2420   <.cop 3530   class class class wbr 3929   -->wf 5119   ` cfv 5123  (class class class)co 5774   1oc1o 6306   [cec 6427   N.cnpi 7080    <N clti 7083    ~Q ceq 7087   Q.cnq 7088    +Q cplq 7090   *Qcrq 7092    <Q cltq 7093   P.cnp 7099    +P. cpp 7101    <P cltp 7103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-enq0 7232  df-nq0 7233  df-0nq0 7234  df-plq0 7235  df-mq0 7236  df-inp 7274  df-iplp 7276  df-iltp 7278
This theorem is referenced by:  caucvgprpr  7520
  Copyright terms: Public domain W3C validator