ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemloc Unicode version

Theorem caucvgprprlemloc 7511
Description: Lemma for caucvgprpr 7520. The putative limit is located. (Contributed by Jim Kingdon, 21-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprpr.bnd  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
caucvgprpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
Assertion
Ref Expression
caucvgprprlemloc  |-  ( ph  ->  A. s  e.  Q.  A. t  e.  Q.  (
s  <Q  t  ->  (
s  e.  ( 1st `  L )  \/  t  e.  ( 2nd `  L
) ) ) )
Distinct variable groups:    A, m    m, F    F, l, r    u, F, r    q, p, s, t    ph, s, t    p, l, q, s, t, r   
u, p, q, s, t
Allowed substitution hints:    ph( u, k, m, n, r, q, p, l)    A( u, t, k, n, s, r, q, p, l)    F( t, k, n, s, q, p)    L( u, t, k, m, n, s, r, q, p, l)

Proof of Theorem caucvgprprlemloc
Dummy variables  a  b  f  g  h  c  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexnqi 7217 . . . . 5  |-  ( s 
<Q  t  ->  E. y  e.  Q.  ( s  +Q  y )  =  t )
21adantl 275 . . . 4  |-  ( ( ( ph  /\  (
s  e.  Q.  /\  t  e.  Q. )
)  /\  s  <Q  t )  ->  E. y  e.  Q.  ( s  +Q  y )  =  t )
3 subhalfnqq 7222 . . . . . 6  |-  ( y  e.  Q.  ->  E. x  e.  Q.  ( x  +Q  x )  <Q  y
)
43ad2antrl 481 . . . . 5  |-  ( ( ( ( ph  /\  ( s  e.  Q.  /\  t  e.  Q. )
)  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  t ) )  ->  E. x  e.  Q.  ( x  +Q  x
)  <Q  y )
5 archrecnq 7471 . . . . . . 7  |-  ( x  e.  Q.  ->  E. c  e.  N.  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x )
65ad2antrl 481 . . . . . 6  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  t  e.  Q. )
)  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  t ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  E. c  e.  N.  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x )
7 simpllr 523 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  t  e.  Q. )
)  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  t ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  s  <Q  t )
87adantr 274 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  t  e. 
Q. ) )  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  t ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x
) )  ->  s  <Q  t )
9 simplrl 524 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  t  e.  Q. )
)  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  t ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  y  e.  Q. )
109adantr 274 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  t  e. 
Q. ) )  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  t ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x
) )  ->  y  e.  Q. )
11 simplrr 525 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  t  e.  Q. )
)  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  t ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  (
s  +Q  y )  =  t )
1211adantr 274 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  t  e. 
Q. ) )  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  t ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x
) )  ->  (
s  +Q  y )  =  t )
13 simplrl 524 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  t  e. 
Q. ) )  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  t ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x
) )  ->  x  e.  Q. )
14 simplrr 525 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  t  e. 
Q. ) )  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  t ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x
) )  ->  (
x  +Q  x ) 
<Q  y )
15 simprl 520 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  t  e. 
Q. ) )  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  t ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x
) )  ->  c  e.  N. )
16 simprr 521 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  t  e. 
Q. ) )  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  t ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x
) )  ->  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x )
178, 10, 12, 13, 14, 15, 16caucvgprprlemloccalc 7492 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  t  e. 
Q. ) )  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  t ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x
) )  ->  ( <. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
18 simplrl 524 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
s  e.  Q.  /\  t  e.  Q. )
)  /\  s  <Q  t )  ->  s  e.  Q. )
1918ad3antrrr 483 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  t  e. 
Q. ) )  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  t ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x
) )  ->  s  e.  Q. )
20 nnnq 7230 . . . . . . . . . . . . . 14  |-  ( c  e.  N.  ->  [ <. c ,  1o >. ]  ~Q  e.  Q. )
2120ad2antrl 481 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  t  e. 
Q. ) )  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  t ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x
) )  ->  [ <. c ,  1o >. ]  ~Q  e.  Q. )
22 recclnq 7200 . . . . . . . . . . . . 13  |-  ( [
<. c ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  e.  Q. )
2321, 22syl 14 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  t  e. 
Q. ) )  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  t ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x
) )  ->  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  e.  Q. )
24 addclnq 7183 . . . . . . . . . . . 12  |-  ( ( s  e.  Q.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
)  e.  Q. )
2519, 23, 24syl2anc 408 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  t  e. 
Q. ) )  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  t ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x
) )  ->  (
s  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
)  e.  Q. )
26 nqprlu 7355 . . . . . . . . . . 11  |-  ( ( s  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
)  e.  Q.  ->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  e.  P. )
2725, 26syl 14 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  t  e. 
Q. ) )  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  t ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x
) )  ->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )  <Q 
q } >.  e.  P. )
28 nqprlu 7355 . . . . . . . . . . 11  |-  ( ( *Q `  [ <. c ,  1o >. ]  ~Q  )  e.  Q.  ->  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )
2923, 28syl 14 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  t  e. 
Q. ) )  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  t ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x
) )  ->  <. { p  |  p  <Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >.  e.  P. )
30 addclpr 7345 . . . . . . . . . 10  |-  ( (
<. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  e.  P.  /\ 
<. { p  |  p 
<Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )  ->  ( <. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  e.  P. )
3127, 29, 30syl2anc 408 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  t  e. 
Q. ) )  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  t ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x
) )  ->  ( <. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  e.  P. )
32 simplrr 525 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
s  e.  Q.  /\  t  e.  Q. )
)  /\  s  <Q  t )  ->  t  e.  Q. )
3332ad3antrrr 483 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  t  e. 
Q. ) )  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  t ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x
) )  ->  t  e.  Q. )
34 nqprlu 7355 . . . . . . . . . 10  |-  ( t  e.  Q.  ->  <. { p  |  p  <Q  t } ,  { q  |  t  <Q  q } >.  e.  P. )
3533, 34syl 14 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  t  e. 
Q. ) )  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  t ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x
) )  ->  <. { p  |  p  <Q  t } ,  { q  |  t  <Q  q } >.  e.  P. )
36 caucvgprpr.f . . . . . . . . . . . 12  |-  ( ph  ->  F : N. --> P. )
3736ad5antr 487 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  t  e. 
Q. ) )  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  t ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x
) )  ->  F : N. --> P. )
3837, 15ffvelrnd 5556 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  t  e. 
Q. ) )  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  t ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x
) )  ->  ( F `  c )  e.  P. )
39 ltrelnq 7173 . . . . . . . . . . . . . 14  |-  <Q  C_  ( Q.  X.  Q. )
4039brel 4591 . . . . . . . . . . . . 13  |-  ( ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x  ->  (
( *Q `  [ <. c ,  1o >. ]  ~Q  )  e.  Q.  /\  x  e.  Q. )
)
4140simpld 111 . . . . . . . . . . . 12  |-  ( ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x  ->  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  e.  Q. )
4241ad2antll 482 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  t  e. 
Q. ) )  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  t ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x
) )  ->  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  e.  Q. )
4342, 28syl 14 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  t  e. 
Q. ) )  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  t ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x
) )  ->  <. { p  |  p  <Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >.  e.  P. )
44 addclpr 7345 . . . . . . . . . 10  |-  ( ( ( F `  c
)  e.  P.  /\  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )  ->  (
( F `  c
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  e.  P. )
4538, 43, 44syl2anc 408 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  t  e. 
Q. ) )  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  t ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x
) )  ->  (
( F `  c
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  e.  P. )
46 ltsopr 7404 . . . . . . . . . 10  |-  <P  Or  P.
47 sowlin 4242 . . . . . . . . . 10  |-  ( ( 
<P  Or  P.  /\  (
( <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
)  <Q  q } >.  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  q } >. )  e.  P.  /\  <. { p  |  p  <Q  t } ,  { q  |  t  <Q  q } >.  e.  P.  /\  ( ( F `  c )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  e.  P. ) )  -> 
( ( <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )  <Q 
q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >.  ->  (
( <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
)  <Q  q } >.  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  ( ( F `  c )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  \/  ( ( F `  c )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
) )
4846, 47mpan 420 . . . . . . . . 9  |-  ( ( ( <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
)  <Q  q } >.  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  q } >. )  e.  P.  /\  <. { p  |  p  <Q  t } ,  { q  |  t  <Q  q } >.  e.  P.  /\  ( ( F `  c )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  e.  P. )  ->  (
( <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
)  <Q  q } >.  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  t } ,  { q  |  t 
<Q  q } >.  ->  (
( <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
)  <Q  q } >.  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  ( ( F `  c )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  \/  ( ( F `  c )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
) )
4931, 35, 45, 48syl3anc 1216 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  t  e. 
Q. ) )  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  t ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x
) )  ->  (
( <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
)  <Q  q } >.  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  t } ,  { q  |  t 
<Q  q } >.  ->  (
( <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
)  <Q  q } >.  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  ( ( F `  c )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  \/  ( ( F `  c )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
) )
5017, 49mpd 13 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  t  e. 
Q. ) )  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  t ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x
) )  ->  (
( <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
)  <Q  q } >.  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  ( ( F `  c )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  \/  ( ( F `  c )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)
5119adantr 274 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  t  e.  Q. )
)  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  t ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )  <Q 
q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( F `  c )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )
)  ->  s  e.  Q. )
52 simplrl 524 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  t  e.  Q. )
)  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  t ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )  <Q 
q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( F `  c )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )
)  ->  c  e.  N. )
53 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  t  e.  Q. )
)  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  t ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )  <Q 
q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( F `  c )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )
)  ->  ( <. { p  |  p  <Q  ( s  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( F `  c )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
54 ltaprg 7427 . . . . . . . . . . . . . 14  |-  ( ( f  e.  P.  /\  g  e.  P.  /\  h  e.  P. )  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
5554adantl 275 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  t  e.  Q. )
)  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  t ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )  <Q 
q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( F `  c )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )
)  /\  ( f  e.  P.  /\  g  e. 
P.  /\  h  e.  P. ) )  ->  (
f  <P  g  <->  ( h  +P.  f )  <P  (
h  +P.  g )
) )
5642adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  t  e.  Q. )
)  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  t ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )  <Q 
q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( F `  c )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )
)  ->  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  e. 
Q. )
5751, 56, 24syl2anc 408 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  t  e.  Q. )
)  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  t ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )  <Q 
q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( F `  c )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )
)  ->  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )  e. 
Q. )
5857, 26syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  t  e.  Q. )
)  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  t ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )  <Q 
q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( F `  c )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )
)  ->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )  <Q 
q } >.  e.  P. )
5938adantr 274 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  t  e.  Q. )
)  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  t ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )  <Q 
q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( F `  c )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )
)  ->  ( F `  c )  e.  P. )
6056, 28syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  t  e.  Q. )
)  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  t ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )  <Q 
q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( F `  c )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )
)  ->  <. { p  |  p  <Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >.  e.  P. )
61 addcomprg 7386 . . . . . . . . . . . . . 14  |-  ( ( f  e.  P.  /\  g  e.  P. )  ->  ( f  +P.  g
)  =  ( g  +P.  f ) )
6261adantl 275 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  t  e.  Q. )
)  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  t ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )  <Q 
q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( F `  c )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )
)  /\  ( f  e.  P.  /\  g  e. 
P. ) )  -> 
( f  +P.  g
)  =  ( g  +P.  f ) )
6355, 58, 59, 60, 62caovord2d 5940 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  t  e.  Q. )
)  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  t ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )  <Q 
q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( F `  c )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )
)  ->  ( <. { p  |  p  <Q  ( s  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  c )  <->  (
<. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( F `  c )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )
) )
6453, 63mpbird 166 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  t  e.  Q. )
)  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  t ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )  <Q 
q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( F `  c )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )
)  ->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  c )
)
65 opeq1 3705 . . . . . . . . . . . . . . . . . . 19  |-  ( a  =  c  ->  <. a ,  1o >.  =  <. c ,  1o >. )
6665eceq1d 6465 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  c  ->  [ <. a ,  1o >. ]  ~Q  =  [ <. c ,  1o >. ]  ~Q  )
6766fveq2d 5425 . . . . . . . . . . . . . . . . 17  |-  ( a  =  c  ->  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )
6867oveq2d 5790 . . . . . . . . . . . . . . . 16  |-  ( a  =  c  ->  (
s  +Q  ( *Q
`  [ <. a ,  1o >. ]  ~Q  )
)  =  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) )
6968breq2d 3941 . . . . . . . . . . . . . . 15  |-  ( a  =  c  ->  (
p  <Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <->  p  <Q  ( s  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) ) )
7069abbidv 2257 . . . . . . . . . . . . . 14  |-  ( a  =  c  ->  { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) }  =  { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) } )
7168breq1d 3939 . . . . . . . . . . . . . . 15  |-  ( a  =  c  ->  (
( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  q  <->  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )  <Q 
q ) )
7271abbidv 2257 . . . . . . . . . . . . . 14  |-  ( a  =  c  ->  { q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
q }  =  {
q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) 
<Q  q } )
7370, 72opeq12d 3713 . . . . . . . . . . . . 13  |-  ( a  =  c  ->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) )  <Q 
q } >.  =  <. { p  |  p  <Q  ( s  +Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) 
<Q  q } >. )
74 fveq2 5421 . . . . . . . . . . . . 13  |-  ( a  =  c  ->  ( F `  a )  =  ( F `  c ) )
7573, 74breq12d 3942 . . . . . . . . . . . 12  |-  ( a  =  c  ->  ( <. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  a )  <->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  c )
) )
7675rspcev 2789 . . . . . . . . . . 11  |-  ( ( c  e.  N.  /\  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  c )
)  ->  E. a  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  a
) )
7752, 64, 76syl2anc 408 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  t  e.  Q. )
)  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  t ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )  <Q 
q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( F `  c )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )
)  ->  E. a  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  a
) )
78 caucvgprpr.lim . . . . . . . . . . 11  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
7978caucvgprprlemell 7493 . . . . . . . . . 10  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. a  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. a ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  a
) ) )
8051, 77, 79sylanbrc 413 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  t  e.  Q. )
)  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  t ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )  <Q 
q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( F `  c )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )
)  ->  s  e.  ( 1st `  L ) )
8180ex 114 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  t  e. 
Q. ) )  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  t ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x
) )  ->  (
( <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  )
)  <Q  q } >.  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  ( ( F `  c )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  ->  s  e.  ( 1st `  L ) ) )
8233adantr 274 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  t  e.  Q. )
)  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  t ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( ( F `
 c )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  t } ,  { q  |  t 
<Q  q } >. )  ->  t  e.  Q. )
83 fveq2 5421 . . . . . . . . . . . . . 14  |-  ( b  =  c  ->  ( F `  b )  =  ( F `  c ) )
84 opeq1 3705 . . . . . . . . . . . . . . . . . . 19  |-  ( b  =  c  ->  <. b ,  1o >.  =  <. c ,  1o >. )
8584eceq1d 6465 . . . . . . . . . . . . . . . . . 18  |-  ( b  =  c  ->  [ <. b ,  1o >. ]  ~Q  =  [ <. c ,  1o >. ]  ~Q  )
8685fveq2d 5425 . . . . . . . . . . . . . . . . 17  |-  ( b  =  c  ->  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )
8786breq2d 3941 . . . . . . . . . . . . . . . 16  |-  ( b  =  c  ->  (
p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <->  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) )
8887abbidv 2257 . . . . . . . . . . . . . . 15  |-  ( b  =  c  ->  { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) }  =  { p  |  p  <Q  ( *Q
`  [ <. c ,  1o >. ]  ~Q  ) } )
8986breq1d 3939 . . . . . . . . . . . . . . . 16  |-  ( b  =  c  ->  (
( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q  <->  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  q ) )
9089abbidv 2257 . . . . . . . . . . . . . . 15  |-  ( b  =  c  ->  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q }  =  {
q  |  ( *Q
`  [ <. c ,  1o >. ]  ~Q  )  <Q  q } )
9188, 90opeq12d 3713 . . . . . . . . . . . . . 14  |-  ( b  =  c  ->  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >.  =  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )
9283, 91oveq12d 5792 . . . . . . . . . . . . 13  |-  ( b  =  c  ->  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  =  ( ( F `
 c )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  q } >. ) )
9392breq1d 3939 . . . . . . . . . . . 12  |-  ( b  =  c  ->  (
( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >.  <->  ( ( F `  c )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  t } ,  { q  |  t  <Q  q } >. ) )
9493rspcev 2789 . . . . . . . . . . 11  |-  ( ( c  e.  N.  /\  ( ( F `  c )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )  ->  E. b  e.  N.  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
9515, 94sylan 281 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  t  e.  Q. )
)  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  t ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( ( F `
 c )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  t } ,  { q  |  t 
<Q  q } >. )  ->  E. b  e.  N.  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
9678caucvgprprlemelu 7494 . . . . . . . . . 10  |-  ( t  e.  ( 2nd `  L
)  <->  ( t  e. 
Q.  /\  E. b  e.  N.  ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  t } ,  { q  |  t 
<Q  q } >. )
)
9782, 95, 96sylanbrc 413 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  t  e.  Q. )
)  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  t ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( ( F `
 c )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  t } ,  { q  |  t 
<Q  q } >. )  ->  t  e.  ( 2nd `  L ) )
9897ex 114 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  t  e. 
Q. ) )  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  t ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x
) )  ->  (
( ( F `  c )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >.  ->  t  e.  ( 2nd `  L
) ) )
9981, 98orim12d 775 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  t  e. 
Q. ) )  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  t ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x
) )  ->  (
( ( <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) )  <Q 
q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( ( F `  c )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  \/  ( ( F `  c )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. c ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )  ->  ( s  e.  ( 1st `  L )  \/  t  e.  ( 2nd `  L ) ) ) )
10050, 99mpd 13 . . . . . 6  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  t  e. 
Q. ) )  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  t ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( c  e.  N.  /\  ( *Q `  [ <. c ,  1o >. ]  ~Q  )  <Q  x
) )  ->  (
s  e.  ( 1st `  L )  \/  t  e.  ( 2nd `  L
) ) )
1016, 100rexlimddv 2554 . . . . 5  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  t  e.  Q. )
)  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  t ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  (
s  e.  ( 1st `  L )  \/  t  e.  ( 2nd `  L
) ) )
1024, 101rexlimddv 2554 . . . 4  |-  ( ( ( ( ph  /\  ( s  e.  Q.  /\  t  e.  Q. )
)  /\  s  <Q  t )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  t ) )  ->  ( s  e.  ( 1st `  L
)  \/  t  e.  ( 2nd `  L
) ) )
1032, 102rexlimddv 2554 . . 3  |-  ( ( ( ph  /\  (
s  e.  Q.  /\  t  e.  Q. )
)  /\  s  <Q  t )  ->  ( s  e.  ( 1st `  L
)  \/  t  e.  ( 2nd `  L
) ) )
104103ex 114 . 2  |-  ( (
ph  /\  ( s  e.  Q.  /\  t  e. 
Q. ) )  -> 
( s  <Q  t  ->  ( s  e.  ( 1st `  L )  \/  t  e.  ( 2nd `  L ) ) ) )
105104ralrimivva 2514 1  |-  ( ph  ->  A. s  e.  Q.  A. t  e.  Q.  (
s  <Q  t  ->  (
s  e.  ( 1st `  L )  \/  t  e.  ( 2nd `  L
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    /\ w3a 962    = wceq 1331    e. wcel 1480   {cab 2125   A.wral 2416   E.wrex 2417   {crab 2420   <.cop 3530   class class class wbr 3929    Or wor 4217   -->wf 5119   ` cfv 5123  (class class class)co 5774   1stc1st 6036   2ndc2nd 6037   1oc1o 6306   [cec 6427   N.cnpi 7080    <N clti 7083    ~Q ceq 7087   Q.cnq 7088    +Q cplq 7090   *Qcrq 7092    <Q cltq 7093   P.cnp 7099    +P. cpp 7101    <P cltp 7103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-enq0 7232  df-nq0 7233  df-0nq0 7234  df-plq0 7235  df-mq0 7236  df-inp 7274  df-iplp 7276  df-iltp 7278
This theorem is referenced by:  caucvgprprlemcl  7512
  Copyright terms: Public domain W3C validator