ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemnkeqj Unicode version

Theorem caucvgprprlemnkeqj 7498
Description: Lemma for caucvgprpr 7520. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprprlemnkj.k  |-  ( ph  ->  K  e.  N. )
caucvgprprlemnkj.j  |-  ( ph  ->  J  e.  N. )
caucvgprprlemnkj.s  |-  ( ph  ->  S  e.  Q. )
Assertion
Ref Expression
caucvgprprlemnkeqj  |-  ( (
ph  /\  K  =  J )  ->  -.  ( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)
Distinct variable groups:    k, F, n    J, p, q    K, p, q    S, p, q
Allowed substitution hints:    ph( u, k, n, q, p, l)    S( u, k, n, l)    F( u, q, p, l)    J( u, k, n, l)    K( u, k, n, l)

Proof of Theorem caucvgprprlemnkeqj
StepHypRef Expression
1 ltsopr 7404 . . . 4  |-  <P  Or  P.
2 ltrelpr 7313 . . . 4  |-  <P  C_  ( P.  X.  P. )
31, 2son2lpi 4935 . . 3  |-  -.  (
( F `  J
)  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  /\  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  <P  ( F `  J ) )
4 caucvgprpr.f . . . . . . . . 9  |-  ( ph  ->  F : N. --> P. )
5 caucvgprprlemnkj.j . . . . . . . . 9  |-  ( ph  ->  J  e.  N. )
64, 5ffvelrnd 5556 . . . . . . . 8  |-  ( ph  ->  ( F `  J
)  e.  P. )
76ad2antrr 479 . . . . . . 7  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  -> 
( F `  J
)  e.  P. )
85adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  K  =  J )  ->  J  e.  N. )
9 nnnq 7230 . . . . . . . . . . 11  |-  ( J  e.  N.  ->  [ <. J ,  1o >. ]  ~Q  e.  Q. )
108, 9syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  K  =  J )  ->  [ <. J ,  1o >. ]  ~Q  e.  Q. )
11 recclnq 7200 . . . . . . . . . 10  |-  ( [
<. J ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  e.  Q. )
1210, 11syl 14 . . . . . . . . 9  |-  ( (
ph  /\  K  =  J )  ->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  e.  Q. )
13 nqprlu 7355 . . . . . . . . 9  |-  ( ( *Q `  [ <. J ,  1o >. ]  ~Q  )  e.  Q.  ->  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )
1412, 13syl 14 . . . . . . . 8  |-  ( (
ph  /\  K  =  J )  ->  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >.  e.  P. )
1514adantr 274 . . . . . . 7  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  ->  <. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )
16 ltaddpr 7405 . . . . . . 7  |-  ( ( ( F `  J
)  e.  P.  /\  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )  ->  ( F `  J )  <P  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
177, 15, 16syl2anc 408 . . . . . 6  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  -> 
( F `  J
)  <P  ( ( F `
 J )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) )
18 simprr 521 . . . . . 6  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  -> 
( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. )
191, 2sotri 4934 . . . . . 6  |-  ( ( ( F `  J
)  <P  ( ( F `
 J )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  /\  ( ( F `
 J )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )  ->  ( F `  J
)  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
2017, 18, 19syl2anc 408 . . . . 5  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  -> 
( F `  J
)  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
21 caucvgprprlemnkj.s . . . . . . . . . 10  |-  ( ph  ->  S  e.  Q. )
2221adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  K  =  J )  ->  S  e.  Q. )
23 nqprlu 7355 . . . . . . . . 9  |-  ( S  e.  Q.  ->  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  e.  P. )
2422, 23syl 14 . . . . . . . 8  |-  ( (
ph  /\  K  =  J )  ->  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  e.  P. )
25 ltaddpr 7405 . . . . . . . 8  |-  ( (
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >.  e.  P.  /\ 
<. { p  |  p 
<Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )  ->  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  <P  ( <. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
2624, 14, 25syl2anc 408 . . . . . . 7  |-  ( (
ph  /\  K  =  J )  ->  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  <P  ( <. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
2726adantr 274 . . . . . 6  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  ->  <. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >.  <P  ( <. { p  |  p  <Q  S } ,  {
q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
28 simprl 520 . . . . . . 7  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  ->  <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )
)
29 addnqpr 7369 . . . . . . . . . 10  |-  ( ( S  e.  Q.  /\  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  e.  Q. )  -> 
<. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  =  (
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
3022, 12, 29syl2anc 408 . . . . . . . . 9  |-  ( (
ph  /\  K  =  J )  ->  <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  <Q  q } >.  =  ( <. { p  |  p  <Q  S } ,  {
q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )
)
3130breq1d 3939 . . . . . . . 8  |-  ( (
ph  /\  K  =  J )  ->  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  <->  (
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  J
) ) )
3231adantr 274 . . . . . . 7  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  -> 
( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  J
)  <->  ( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  J
) ) )
3328, 32mpbid 146 . . . . . 6  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  -> 
( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  J
) )
341, 2sotri 4934 . . . . . 6  |-  ( (
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >.  <P  ( <. { p  |  p  <Q  S } ,  {
q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  /\  ( <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P  ( F `  J
) )  ->  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  <P  ( F `  J )
)
3527, 33, 34syl2anc 408 . . . . 5  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  ->  <. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >.  <P  ( F `
 J ) )
3620, 35jca 304 . . . 4  |-  ( ( ( ph  /\  K  =  J )  /\  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) )  -> 
( ( F `  J )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  /\  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  <P  ( F `  J ) ) )
3736ex 114 . . 3  |-  ( (
ph  /\  K  =  J )  ->  (
( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  J
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )  ->  ( ( F `  J )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  /\  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >.  <P  ( F `  J ) ) ) )
383, 37mtoi 653 . 2  |-  ( (
ph  /\  K  =  J )  ->  -.  ( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  J
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)
39 opeq1 3705 . . . . . . . . . . 11  |-  ( K  =  J  ->  <. K ,  1o >.  =  <. J ,  1o >. )
4039eceq1d 6465 . . . . . . . . . 10  |-  ( K  =  J  ->  [ <. K ,  1o >. ]  ~Q  =  [ <. J ,  1o >. ]  ~Q  )
4140fveq2d 5425 . . . . . . . . 9  |-  ( K  =  J  ->  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )
4241oveq2d 5790 . . . . . . . 8  |-  ( K  =  J  ->  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  =  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) )
4342breq2d 3941 . . . . . . 7  |-  ( K  =  J  ->  (
p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  <->  p  <Q  ( S  +Q  ( *Q
`  [ <. J ,  1o >. ]  ~Q  )
) ) )
4443abbidv 2257 . . . . . 6  |-  ( K  =  J  ->  { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) }  =  { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) } )
4542breq1d 3939 . . . . . . 7  |-  ( K  =  J  ->  (
( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
)  <Q  q  <->  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  <Q 
q ) )
4645abbidv 2257 . . . . . 6  |-  ( K  =  J  ->  { q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  <Q  q }  =  { q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  <Q  q } )
4744, 46opeq12d 3713 . . . . 5  |-  ( K  =  J  ->  <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  <Q  q } >.  =  <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  <Q  q } >. )
48 fveq2 5421 . . . . 5  |-  ( K  =  J  ->  ( F `  K )  =  ( F `  J ) )
4947, 48breq12d 3942 . . . 4  |-  ( K  =  J  ->  ( <. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  K )  <->  <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )
) )
5049anbi1d 460 . . 3  |-  ( K  =  J  ->  (
( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )  <->  (
<. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) ) )
5150adantl 275 . 2  |-  ( (
ph  /\  K  =  J )  ->  (
( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )  <->  (
<. { p  |  p 
<Q  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( S  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  J )  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  S } ,  {
q  |  S  <Q  q } >. ) ) )
5238, 51mtbird 662 1  |-  ( (
ph  /\  K  =  J )  ->  -.  ( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  K
)  /\  ( ( F `  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   {cab 2125   A.wral 2416   <.cop 3530   class class class wbr 3929   -->wf 5119   ` cfv 5123  (class class class)co 5774   1oc1o 6306   [cec 6427   N.cnpi 7080    <N clti 7083    ~Q ceq 7087   Q.cnq 7088    +Q cplq 7090   *Qcrq 7092    <Q cltq 7093   P.cnp 7099    +P. cpp 7101    <P cltp 7103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7112  df-pli 7113  df-mi 7114  df-lti 7115  df-plpq 7152  df-mpq 7153  df-enq 7155  df-nqqs 7156  df-plqqs 7157  df-mqqs 7158  df-1nqqs 7159  df-rq 7160  df-ltnqqs 7161  df-enq0 7232  df-nq0 7233  df-0nq0 7234  df-plq0 7235  df-mq0 7236  df-inp 7274  df-iplp 7276  df-iltp 7278
This theorem is referenced by:  caucvgprprlemnkj  7500
  Copyright terms: Public domain W3C validator