ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgre Unicode version

Theorem caucvgre 9808
Description: Convergence of real sequences.

A Cauchy sequence (as defined here, which has a rate of convergence built in) of real numbers converges to a real number. Specifically on rate of convergence, all terms after the nth term must be within  1  /  n of the nth term.

(Contributed by Jim Kingdon, 19-Jul-2021.)

Hypotheses
Ref Expression
caucvgre.f  |-  ( ph  ->  F : NN --> RR )
caucvgre.cau  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( 1  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( 1  /  n ) ) ) )
Assertion
Ref Expression
caucvgre  |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) ) )
Distinct variable groups:    i, F, j, x, y    k, F, i, x, y    n, F, k    ph, k, n    ph, x, y
Allowed substitution hints:    ph( i, j)

Proof of Theorem caucvgre
Dummy variables  m  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfnn2 7992 . . . 4  |-  NN  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
2 caucvgre.f . . . 4  |-  ( ph  ->  F : NN --> RR )
3 caucvgre.cau . . . . 5  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( 1  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( 1  /  n ) ) ) )
42, 3caucvgrelemcau 9807 . . . 4  |-  ( ph  ->  A. n  e.  NN  A. k  e.  NN  (
n  <RR  k  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) ) )
51, 2, 4ax-caucvg 7062 . . 3  |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR  (
0  <RR  x  ->  E. m  e.  NN  A. k  e.  NN  ( m  <RR  k  ->  ( ( F `
 k )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x ) ) ) ) )
6 ralrp 8702 . . . . 5  |-  ( A. x  e.  RR+  E. m  e.  NN  A. k  e.  NN  ( m  <RR  k  ->  ( ( F `
 k )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x ) ) )  <->  A. x  e.  RR  ( 0  <  x  ->  E. m  e.  NN  A. k  e.  NN  (
m  <RR  k  ->  (
( F `  k
)  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x
) ) ) ) )
7 0re 7085 . . . . . . . 8  |-  0  e.  RR
8 ltxrlt 7144 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  x  e.  RR )  ->  ( 0  <  x  <->  0 
<RR  x ) )
97, 8mpan 408 . . . . . . 7  |-  ( x  e.  RR  ->  (
0  <  x  <->  0  <RR  x ) )
109imbi1d 224 . . . . . 6  |-  ( x  e.  RR  ->  (
( 0  <  x  ->  E. m  e.  NN  A. k  e.  NN  (
m  <RR  k  ->  (
( F `  k
)  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x
) ) ) )  <-> 
( 0  <RR  x  ->  E. m  e.  NN  A. k  e.  NN  (
m  <RR  k  ->  (
( F `  k
)  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x
) ) ) ) ) )
1110ralbiia 2355 . . . . 5  |-  ( A. x  e.  RR  (
0  <  x  ->  E. m  e.  NN  A. k  e.  NN  (
m  <RR  k  ->  (
( F `  k
)  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x
) ) ) )  <->  A. x  e.  RR  ( 0  <RR  x  ->  E. m  e.  NN  A. k  e.  NN  (
m  <RR  k  ->  (
( F `  k
)  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x
) ) ) ) )
126, 11bitri 177 . . . 4  |-  ( A. x  e.  RR+  E. m  e.  NN  A. k  e.  NN  ( m  <RR  k  ->  ( ( F `
 k )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x ) ) )  <->  A. x  e.  RR  ( 0  <RR  x  ->  E. m  e.  NN  A. k  e.  NN  (
m  <RR  k  ->  (
( F `  k
)  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x
) ) ) ) )
1312rexbii 2348 . . 3  |-  ( E. y  e.  RR  A. x  e.  RR+  E. m  e.  NN  A. k  e.  NN  ( m  <RR  k  ->  ( ( F `
 k )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x ) ) )  <->  E. y  e.  RR  A. x  e.  RR  (
0  <RR  x  ->  E. m  e.  NN  A. k  e.  NN  ( m  <RR  k  ->  ( ( F `
 k )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x ) ) ) ) )
145, 13sylibr 141 . 2  |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR+  E. m  e.  NN  A. k  e.  NN  ( m  <RR  k  ->  ( ( F `
 k )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x ) ) ) )
15 simpr 107 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  ->  m  e.  NN )
1615peano2nnd 8005 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  ->  ( m  + 
1 )  e.  NN )
17 uznnssnn 8616 . . . . . . . . 9  |-  ( ( m  +  1 )  e.  NN  ->  ( ZZ>=
`  ( m  + 
1 ) )  C_  NN )
18 ssralv 3032 . . . . . . . . 9  |-  ( (
ZZ>= `  ( m  + 
1 ) )  C_  NN  ->  ( A. k  e.  NN  ( m  <RR  k  ->  ( ( F `
 k )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x ) ) )  ->  A. k  e.  ( ZZ>= `  ( m  +  1 ) ) ( m  <RR  k  -> 
( ( F `  k )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `
 k )  +  x ) ) ) ) )
1916, 17, 183syl 17 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  ->  ( A. k  e.  NN  ( m  <RR  k  ->  ( ( F `
 k )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x ) ) )  ->  A. k  e.  ( ZZ>= `  ( m  +  1 ) ) ( m  <RR  k  -> 
( ( F `  k )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `
 k )  +  x ) ) ) ) )
20 eluznn 8634 . . . . . . . . . . . . . 14  |-  ( ( ( m  +  1 )  e.  NN  /\  k  e.  ( ZZ>= `  ( m  +  1
) ) )  -> 
k  e.  NN )
2116, 20sylan 271 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  (
ZZ>= `  ( m  + 
1 ) ) )  ->  k  e.  NN )
22 simplr 490 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  m  e.  NN )
2322peano2nnd 8005 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( m  + 
1 )  e.  NN )
2423nnzd 8418 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( m  + 
1 )  e.  ZZ )
25 eluz1 8573 . . . . . . . . . . . . . . . 16  |-  ( ( m  +  1 )  e.  ZZ  ->  (
k  e.  ( ZZ>= `  ( m  +  1
) )  <->  ( k  e.  ZZ  /\  ( m  +  1 )  <_ 
k ) ) )
2624, 25syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( k  e.  ( ZZ>= `  ( m  +  1 ) )  <-> 
( k  e.  ZZ  /\  ( m  +  1 )  <_  k )
) )
2726biimpd 136 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( k  e.  ( ZZ>= `  ( m  +  1 ) )  ->  ( k  e.  ZZ  /\  ( m  +  1 )  <_ 
k ) ) )
2827impancom 251 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  (
ZZ>= `  ( m  + 
1 ) ) )  ->  ( k  e.  NN  ->  ( k  e.  ZZ  /\  ( m  +  1 )  <_ 
k ) ) )
2921, 28mpd 13 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  (
ZZ>= `  ( m  + 
1 ) ) )  ->  ( k  e.  ZZ  /\  ( m  +  1 )  <_ 
k ) )
3029simprd 111 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  (
ZZ>= `  ( m  + 
1 ) ) )  ->  ( m  + 
1 )  <_  k
)
31 nnre 7997 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  m  e.  RR )
3231ad2antlr 466 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  m  e.  RR )
33 simpr 107 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  k  e.  NN )
3433nnred 8003 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  k  e.  RR )
35 1re 7084 . . . . . . . . . . . . . . 15  |-  1  e.  RR
36 ltadd1 7498 . . . . . . . . . . . . . . 15  |-  ( ( m  e.  RR  /\  k  e.  RR  /\  1  e.  RR )  ->  (
m  <  k  <->  ( m  +  1 )  < 
( k  +  1 ) ) )
3735, 36mp3an3 1232 . . . . . . . . . . . . . 14  |-  ( ( m  e.  RR  /\  k  e.  RR )  ->  ( m  <  k  <->  ( m  +  1 )  <  ( k  +  1 ) ) )
3832, 34, 37syl2anc 397 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( m  < 
k  <->  ( m  + 
1 )  <  (
k  +  1 ) ) )
39 nnleltp1 8361 . . . . . . . . . . . . . 14  |-  ( ( ( m  +  1 )  e.  NN  /\  k  e.  NN )  ->  ( ( m  + 
1 )  <_  k  <->  ( m  +  1 )  <  ( k  +  1 ) ) )
4023, 33, 39syl2anc 397 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( ( m  +  1 )  <_ 
k  <->  ( m  + 
1 )  <  (
k  +  1 ) ) )
4138, 40bitr4d 184 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( m  < 
k  <->  ( m  + 
1 )  <_  k
) )
4221, 41syldan 270 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  (
ZZ>= `  ( m  + 
1 ) ) )  ->  ( m  < 
k  <->  ( m  + 
1 )  <_  k
) )
4330, 42mpbird 160 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  (
ZZ>= `  ( m  + 
1 ) ) )  ->  m  <  k
)
44 nnre 7997 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  k  e.  RR )
45 ltxrlt 7144 . . . . . . . . . . . . . . 15  |-  ( ( m  e.  RR  /\  k  e.  RR )  ->  ( m  <  k  <->  m 
<RR  k ) )
4631, 44, 45syl2an 277 . . . . . . . . . . . . . 14  |-  ( ( m  e.  NN  /\  k  e.  NN )  ->  ( m  <  k  <->  m 
<RR  k ) )
4746adantll 453 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( m  < 
k  <->  m  <RR  k ) )
482ad4antr 471 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  F : NN --> RR )
4948, 33ffvelrnd 5331 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( F `  k )  e.  RR )
50 simpllr 494 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  ->  y  e.  RR )
5150adantr 265 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  y  e.  RR )
52 rpre 8687 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  RR+  ->  x  e.  RR )
5352ad3antlr 470 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  x  e.  RR )
5451, 53readdcld 7114 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( y  +  x )  e.  RR )
55 ltxrlt 7144 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  k
)  e.  RR  /\  ( y  +  x
)  e.  RR )  ->  ( ( F `
 k )  < 
( y  +  x
)  <->  ( F `  k )  <RR  ( y  +  x ) ) )
5649, 54, 55syl2anc 397 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( ( F `
 k )  < 
( y  +  x
)  <->  ( F `  k )  <RR  ( y  +  x ) ) )
5749, 53readdcld 7114 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( ( F `
 k )  +  x )  e.  RR )
58 ltxrlt 7144 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  RR  /\  ( ( F `  k )  +  x
)  e.  RR )  ->  ( y  < 
( ( F `  k )  +  x
)  <->  y  <RR  ( ( F `  k )  +  x ) ) )
5951, 57, 58syl2anc 397 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( y  < 
( ( F `  k )  +  x
)  <->  y  <RR  ( ( F `  k )  +  x ) ) )
6056, 59anbi12d 450 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( ( ( F `  k )  <  ( y  +  x )  /\  y  <  ( ( F `  k )  +  x
) )  <->  ( ( F `  k )  <RR  ( y  +  x
)  /\  y  <RR  ( ( F `  k
)  +  x ) ) ) )
6147, 60imbi12d 227 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( ( m  <  k  ->  (
( F `  k
)  <  ( y  +  x )  /\  y  <  ( ( F `  k )  +  x
) ) )  <->  ( m  <RR  k  ->  ( ( F `  k )  <RR  ( y  +  x
)  /\  y  <RR  ( ( F `  k
)  +  x ) ) ) ) )
6261biimprd 151 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( ( m 
<RR  k  ->  ( ( F `  k ) 
<RR  ( y  +  x
)  /\  y  <RR  ( ( F `  k
)  +  x ) ) )  ->  (
m  <  k  ->  ( ( F `  k
)  <  ( y  +  x )  /\  y  <  ( ( F `  k )  +  x
) ) ) ) )
6321, 62syldan 270 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  (
ZZ>= `  ( m  + 
1 ) ) )  ->  ( ( m 
<RR  k  ->  ( ( F `  k ) 
<RR  ( y  +  x
)  /\  y  <RR  ( ( F `  k
)  +  x ) ) )  ->  (
m  <  k  ->  ( ( F `  k
)  <  ( y  +  x )  /\  y  <  ( ( F `  k )  +  x
) ) ) ) )
6443, 63mpid 41 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  (
ZZ>= `  ( m  + 
1 ) ) )  ->  ( ( m 
<RR  k  ->  ( ( F `  k ) 
<RR  ( y  +  x
)  /\  y  <RR  ( ( F `  k
)  +  x ) ) )  ->  (
( F `  k
)  <  ( y  +  x )  /\  y  <  ( ( F `  k )  +  x
) ) ) )
6564ralimdva 2404 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  ( m  +  1 ) ) ( m  <RR  k  -> 
( ( F `  k )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `
 k )  +  x ) ) )  ->  A. k  e.  (
ZZ>= `  ( m  + 
1 ) ) ( ( F `  k
)  <  ( y  +  x )  /\  y  <  ( ( F `  k )  +  x
) ) ) )
6619, 65syld 44 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  ->  ( A. k  e.  NN  ( m  <RR  k  ->  ( ( F `
 k )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x ) ) )  ->  A. k  e.  ( ZZ>= `  ( m  +  1 ) ) ( ( F `  k )  <  (
y  +  x )  /\  y  <  (
( F `  k
)  +  x ) ) ) )
67 fveq2 5206 . . . . . . . . . 10  |-  ( k  =  i  ->  ( F `  k )  =  ( F `  i ) )
6867breq1d 3802 . . . . . . . . 9  |-  ( k  =  i  ->  (
( F `  k
)  <  ( y  +  x )  <->  ( F `  i )  <  (
y  +  x ) ) )
6967oveq1d 5555 . . . . . . . . . 10  |-  ( k  =  i  ->  (
( F `  k
)  +  x )  =  ( ( F `
 i )  +  x ) )
7069breq2d 3804 . . . . . . . . 9  |-  ( k  =  i  ->  (
y  <  ( ( F `  k )  +  x )  <->  y  <  ( ( F `  i
)  +  x ) ) )
7168, 70anbi12d 450 . . . . . . . 8  |-  ( k  =  i  ->  (
( ( F `  k )  <  (
y  +  x )  /\  y  <  (
( F `  k
)  +  x ) )  <->  ( ( F `
 i )  < 
( y  +  x
)  /\  y  <  ( ( F `  i
)  +  x ) ) ) )
7271cbvralv 2550 . . . . . . 7  |-  ( A. k  e.  ( ZZ>= `  ( m  +  1
) ) ( ( F `  k )  <  ( y  +  x )  /\  y  <  ( ( F `  k )  +  x
) )  <->  A. i  e.  ( ZZ>= `  ( m  +  1 ) ) ( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) ) )
7366, 72syl6ib 154 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  ->  ( A. k  e.  NN  ( m  <RR  k  ->  ( ( F `
 k )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x ) ) )  ->  A. i  e.  ( ZZ>= `  ( m  +  1 ) ) ( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) ) ) )
7473reximdva 2438 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  ->  ( E. m  e.  NN  A. k  e.  NN  (
m  <RR  k  ->  (
( F `  k
)  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x
) ) )  ->  E. m  e.  NN  A. i  e.  ( ZZ>= `  ( m  +  1
) ) ( ( F `  i )  <  ( y  +  x )  /\  y  <  ( ( F `  i )  +  x
) ) ) )
75 fveq2 5206 . . . . . . . . . 10  |-  ( j  =  ( m  + 
1 )  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  ( m  +  1 ) ) )
7675raleqdv 2528 . . . . . . . . 9  |-  ( j  =  ( m  + 
1 )  ->  ( A. i  e.  ( ZZ>=
`  j ) ( ( F `  i
)  <  ( y  +  x )  /\  y  <  ( ( F `  i )  +  x
) )  <->  A. i  e.  ( ZZ>= `  ( m  +  1 ) ) ( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) ) ) )
7776rspcev 2673 . . . . . . . 8  |-  ( ( ( m  +  1 )  e.  NN  /\  A. i  e.  ( ZZ>= `  ( m  +  1
) ) ( ( F `  i )  <  ( y  +  x )  /\  y  <  ( ( F `  i )  +  x
) ) )  ->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( y  +  x )  /\  y  <  ( ( F `  i )  +  x
) ) )
7816, 77sylan 271 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  A. i  e.  ( ZZ>= `  ( m  +  1 ) ) ( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) ) )  ->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) ) )
7978ex 112 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  ->  ( A. i  e.  ( ZZ>= `  ( m  +  1 ) ) ( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) )  ->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) ) ) )
8079rexlimdva 2450 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  ->  ( E. m  e.  NN  A. i  e.  ( ZZ>= `  ( m  +  1
) ) ( ( F `  i )  <  ( y  +  x )  /\  y  <  ( ( F `  i )  +  x
) )  ->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) ) ) )
8174, 80syld 44 . . . 4  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  ->  ( E. m  e.  NN  A. k  e.  NN  (
m  <RR  k  ->  (
( F `  k
)  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x
) ) )  ->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( y  +  x )  /\  y  <  ( ( F `  i )  +  x
) ) ) )
8281ralimdva 2404 . . 3  |-  ( (
ph  /\  y  e.  RR )  ->  ( A. x  e.  RR+  E. m  e.  NN  A. k  e.  NN  ( m  <RR  k  ->  ( ( F `
 k )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x ) ) )  ->  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) ) ) )
8382reximdva 2438 . 2  |-  ( ph  ->  ( E. y  e.  RR  A. x  e.  RR+  E. m  e.  NN  A. k  e.  NN  (
m  <RR  k  ->  (
( F `  k
)  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x
) ) )  ->  E. y  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) ) ) )
8414, 83mpd 13 1  |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    = wceq 1259    e. wcel 1409   A.wral 2323   E.wrex 2324    C_ wss 2945   class class class wbr 3792   -->wf 4926   ` cfv 4930  (class class class)co 5540   RRcr 6946   0cc0 6947   1c1 6948    + caddc 6950    <RR cltrr 6951    < clt 7119    <_ cle 7120    / cdiv 7725   NNcn 7990   ZZcz 8302   ZZ>=cuz 8569   RR+crp 8681
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339  ax-cnex 7033  ax-resscn 7034  ax-1cn 7035  ax-1re 7036  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-mulrcl 7041  ax-addcom 7042  ax-mulcom 7043  ax-addass 7044  ax-mulass 7045  ax-distr 7046  ax-i2m1 7047  ax-1rid 7049  ax-0id 7050  ax-rnegex 7051  ax-precex 7052  ax-cnre 7053  ax-pre-ltirr 7054  ax-pre-ltwlin 7055  ax-pre-lttrn 7056  ax-pre-apti 7057  ax-pre-ltadd 7058  ax-pre-mulgt0 7059  ax-pre-mulext 7060  ax-caucvg 7062
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rmo 2331  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-iplp 6624  df-iltp 6626  df-enr 6869  df-nr 6870  df-ltr 6873  df-0r 6874  df-1r 6875  df-0 6954  df-1 6955  df-r 6957  df-lt 6960  df-pnf 7121  df-mnf 7122  df-xr 7123  df-ltxr 7124  df-le 7125  df-sub 7247  df-neg 7248  df-reap 7640  df-ap 7647  df-div 7726  df-inn 7991  df-n0 8240  df-z 8303  df-uz 8570  df-rp 8682
This theorem is referenced by:  cvg1nlemres  9812
  Copyright terms: Public domain W3C validator