ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlembound Unicode version

Theorem caucvgsrlembound 7032
Description: Lemma for caucvgsr 7040. Defining the boundedness condition in terms of positive reals. (Contributed by Jim Kingdon, 25-Jun-2021.)
Hypotheses
Ref Expression
caucvgsr.f  |-  ( ph  ->  F : N. --> R. )
caucvgsr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
caucvgsrlemgt1.gt1  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )
caucvgsrlemf.xfr  |-  G  =  ( x  e.  N.  |->  ( iota_ y  e.  P.  ( F `  x )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
)
Assertion
Ref Expression
caucvgsrlembound  |-  ( ph  ->  A. m  e.  N.  1P  <P  ( G `  m ) )
Distinct variable groups:    m, F, x, y    ph, x    m, G
Allowed substitution hints:    ph( y, u, k, m, n, l)    F( u, k, n, l)    G( x, y, u, k, n, l)

Proof of Theorem caucvgsrlembound
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 caucvgsrlemgt1.gt1 . . . . . . 7  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )
2 fveq2 5209 . . . . . . . . 9  |-  ( m  =  w  ->  ( F `  m )  =  ( F `  w ) )
32breq2d 3805 . . . . . . . 8  |-  ( m  =  w  ->  ( 1R  <R  ( F `  m )  <->  1R  <R  ( F `  w )
) )
43cbvralv 2578 . . . . . . 7  |-  ( A. m  e.  N.  1R  <R  ( F `  m )  <->  A. w  e.  N.  1R  <R  ( F `  w ) )
51, 4sylib 120 . . . . . 6  |-  ( ph  ->  A. w  e.  N.  1R  <R  ( F `  w ) )
65r19.21bi 2450 . . . . 5  |-  ( (
ph  /\  w  e.  N. )  ->  1R  <R  ( F `  w ) )
7 df-1r 6971 . . . . . . 7  |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
87eqcomi 2086 . . . . . 6  |-  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  =  1R
98a1i 9 . . . . 5  |-  ( (
ph  /\  w  e.  N. )  ->  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  =  1R )
10 caucvgsr.f . . . . . 6  |-  ( ph  ->  F : N. --> R. )
11 caucvgsr.cau . . . . . 6  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
12 caucvgsrlemf.xfr . . . . . 6  |-  G  =  ( x  e.  N.  |->  ( iota_ y  e.  P.  ( F `  x )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
)
1310, 11, 1, 12caucvgsrlemfv 7029 . . . . 5  |-  ( (
ph  /\  w  e.  N. )  ->  [ <. ( ( G `  w
)  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  w ) )
146, 9, 133brtr4d 3823 . . . 4  |-  ( (
ph  /\  w  e.  N. )  ->  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  <R  [ <. ( ( G `
 w )  +P. 
1P ) ,  1P >. ]  ~R  )
15 1pr 6806 . . . . 5  |-  1P  e.  P.
1610, 11, 1, 12caucvgsrlemf 7030 . . . . . 6  |-  ( ph  ->  G : N. --> P. )
1716ffvelrnda 5334 . . . . 5  |-  ( (
ph  /\  w  e.  N. )  ->  ( G `
 w )  e. 
P. )
18 prsrlt 7025 . . . . 5  |-  ( ( 1P  e.  P.  /\  ( G `  w )  e.  P. )  -> 
( 1P  <P  ( G `  w )  <->  [
<. ( 1P  +P.  1P ) ,  1P >. ]  ~R  <R  [ <. ( ( G `
 w )  +P. 
1P ) ,  1P >. ]  ~R  ) )
1915, 17, 18sylancr 405 . . . 4  |-  ( (
ph  /\  w  e.  N. )  ->  ( 1P 
<P  ( G `  w
)  <->  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  <R  [ <. (
( G `  w
)  +P.  1P ) ,  1P >. ]  ~R  )
)
2014, 19mpbird 165 . . 3  |-  ( (
ph  /\  w  e.  N. )  ->  1P  <P  ( G `  w ) )
2120ralrimiva 2435 . 2  |-  ( ph  ->  A. w  e.  N.  1P  <P  ( G `  w ) )
22 fveq2 5209 . . . 4  |-  ( w  =  m  ->  ( G `  w )  =  ( G `  m ) )
2322breq2d 3805 . . 3  |-  ( w  =  m  ->  ( 1P  <P  ( G `  w )  <->  1P  <P  ( G `  m ) ) )
2423cbvralv 2578 . 2  |-  ( A. w  e.  N.  1P  <P  ( G `  w
)  <->  A. m  e.  N.  1P  <P  ( G `  m ) )
2521, 24sylib 120 1  |-  ( ph  ->  A. m  e.  N.  1P  <P  ( G `  m ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434   {cab 2068   A.wral 2349   <.cop 3409   class class class wbr 3793    |-> cmpt 3847   -->wf 4928   ` cfv 4932   iota_crio 5498  (class class class)co 5543   1oc1o 6058   [cec 6170   N.cnpi 6524    <N clti 6527    ~Q ceq 6531   *Qcrq 6536    <Q cltq 6537   P.cnp 6543   1Pc1p 6544    +P. cpp 6545    <P cltp 6547    ~R cer 6548   R.cnr 6549   1Rc1r 6551    +R cplr 6553    <R cltr 6555
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rmo 2357  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-eprel 4052  df-id 4056  df-po 4059  df-iso 4060  df-iord 4129  df-on 4131  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-irdg 6019  df-1o 6065  df-2o 6066  df-oadd 6069  df-omul 6070  df-er 6172  df-ec 6174  df-qs 6178  df-ni 6556  df-pli 6557  df-mi 6558  df-lti 6559  df-plpq 6596  df-mpq 6597  df-enq 6599  df-nqqs 6600  df-plqqs 6601  df-mqqs 6602  df-1nqqs 6603  df-rq 6604  df-ltnqqs 6605  df-enq0 6676  df-nq0 6677  df-0nq0 6678  df-plq0 6679  df-mq0 6680  df-inp 6718  df-i1p 6719  df-iplp 6720  df-iltp 6722  df-enr 6965  df-nr 6966  df-ltr 6969  df-0r 6970  df-1r 6971
This theorem is referenced by:  caucvgsrlemgt1  7033
  Copyright terms: Public domain W3C validator