ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemofff Unicode version

Theorem caucvgsrlemofff 7087
Description: Lemma for caucvgsr 7092. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
Hypotheses
Ref Expression
caucvgsr.f  |-  ( ph  ->  F : N. --> R. )
caucvgsr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
caucvgsrlembnd.bnd  |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )
caucvgsrlembnd.offset  |-  G  =  ( a  e.  N.  |->  ( ( ( F `
 a )  +R 
1R )  +R  ( A  .R  -1R ) ) )
Assertion
Ref Expression
caucvgsrlemofff  |-  ( ph  ->  G : N. --> R. )
Distinct variable groups:    A, m    ph, a
Allowed substitution hints:    ph( u, k, m, n, l)    A( u, k, n, a, l)    F( u, k, m, n, a, l)    G( u, k, m, n, a, l)

Proof of Theorem caucvgsrlemofff
StepHypRef Expression
1 caucvgsr.f . . . . 5  |-  ( ph  ->  F : N. --> R. )
21ffvelrnda 5354 . . . 4  |-  ( (
ph  /\  a  e.  N. )  ->  ( F `
 a )  e. 
R. )
3 1sr 7042 . . . 4  |-  1R  e.  R.
4 addclsr 7044 . . . 4  |-  ( ( ( F `  a
)  e.  R.  /\  1R  e.  R. )  -> 
( ( F `  a )  +R  1R )  e.  R. )
52, 3, 4sylancl 404 . . 3  |-  ( (
ph  /\  a  e.  N. )  ->  ( ( F `  a )  +R  1R )  e. 
R. )
6 caucvgsrlembnd.bnd . . . . . 6  |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )
76caucvgsrlemasr 7080 . . . . 5  |-  ( ph  ->  A  e.  R. )
87adantr 270 . . . 4  |-  ( (
ph  /\  a  e.  N. )  ->  A  e. 
R. )
9 m1r 7043 . . . 4  |-  -1R  e.  R.
10 mulclsr 7045 . . . 4  |-  ( ( A  e.  R.  /\  -1R  e.  R. )  -> 
( A  .R  -1R )  e.  R. )
118, 9, 10sylancl 404 . . 3  |-  ( (
ph  /\  a  e.  N. )  ->  ( A  .R  -1R )  e. 
R. )
12 addclsr 7044 . . 3  |-  ( ( ( ( F `  a )  +R  1R )  e.  R.  /\  ( A  .R  -1R )  e. 
R. )  ->  (
( ( F `  a )  +R  1R )  +R  ( A  .R  -1R ) )  e.  R. )
135, 11, 12syl2anc 403 . 2  |-  ( (
ph  /\  a  e.  N. )  ->  ( ( ( F `  a
)  +R  1R )  +R  ( A  .R  -1R ) )  e.  R. )
14 caucvgsrlembnd.offset . 2  |-  G  =  ( a  e.  N.  |->  ( ( ( F `
 a )  +R 
1R )  +R  ( A  .R  -1R ) ) )
1513, 14fmptd 5374 1  |-  ( ph  ->  G : N. --> R. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434   {cab 2069   A.wral 2353   <.cop 3419   class class class wbr 3805    |-> cmpt 3859   -->wf 4948   ` cfv 4952  (class class class)co 5563   1oc1o 6078   [cec 6191   N.cnpi 6576    <N clti 6579    ~Q ceq 6583   *Qcrq 6588    <Q cltq 6589   1Pc1p 6596    +P. cpp 6597    ~R cer 6600   R.cnr 6601   1Rc1r 6603   -1Rcm1r 6604    +R cplr 6605    .R cmr 6606    <R cltr 6607
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-eprel 4072  df-id 4076  df-po 4079  df-iso 4080  df-iord 4149  df-on 4151  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-recs 5974  df-irdg 6039  df-1o 6085  df-2o 6086  df-oadd 6089  df-omul 6090  df-er 6193  df-ec 6195  df-qs 6199  df-ni 6608  df-pli 6609  df-mi 6610  df-lti 6611  df-plpq 6648  df-mpq 6649  df-enq 6651  df-nqqs 6652  df-plqqs 6653  df-mqqs 6654  df-1nqqs 6655  df-rq 6656  df-ltnqqs 6657  df-enq0 6728  df-nq0 6729  df-0nq0 6730  df-plq0 6731  df-mq0 6732  df-inp 6770  df-i1p 6771  df-iplp 6772  df-imp 6773  df-enr 7017  df-nr 7018  df-plr 7019  df-mr 7020  df-ltr 7021  df-1r 7023  df-m1r 7024
This theorem is referenced by:  caucvgsrlemoffcau  7088  caucvgsrlemoffgt1  7089  caucvgsrlemoffres  7090
  Copyright terms: Public domain W3C validator