Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrexdva Unicode version

Theorem cbvrexdva 2589
 Description: Rule used to change the bound variable in a restricted existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
cbvraldva.1
Assertion
Ref Expression
cbvrexdva
Distinct variable groups:   ,   ,   ,,   ,,
Allowed substitution hints:   ()   ()

Proof of Theorem cbvrexdva
StepHypRef Expression
1 cbvraldva.1 . 2
2 eqidd 2084 . 2
31, 2cbvrexdva2 2587 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 102   wb 103  wrex 2354 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-ext 2065 This theorem depends on definitions:  df-bi 115  df-nf 1391  df-cleq 2076  df-clel 2079  df-rex 2359 This theorem is referenced by:  tfrlem3ag  5978  tfrlem3a  5979  tfrlemi1  6001  tfr1onlem3ag  6006
 Copyright terms: Public domain W3C validator