Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrexdva2 Unicode version

Theorem cbvrexdva2 2555
 Description: Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
cbvraldva2.1
cbvraldva2.2
Assertion
Ref Expression
cbvrexdva2
Distinct variable groups:   ,   ,   ,   ,   ,,
Allowed substitution hints:   ()   ()   ()   ()

Proof of Theorem cbvrexdva2
StepHypRef Expression
1 simpr 107 . . . . 5
2 cbvraldva2.2 . . . . 5
31, 2eleq12d 2124 . . . 4
4 cbvraldva2.1 . . . 4
53, 4anbi12d 450 . . 3
65cbvexdva 1820 . 2
7 df-rex 2329 . 2
8 df-rex 2329 . 2
96, 7, 83bitr4g 216 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 101   wb 102   wceq 1259  wex 1397   wcel 1409  wrex 2324 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-nf 1366  df-cleq 2049  df-clel 2052  df-rex 2329 This theorem is referenced by:  cbvrexdva  2557  acexmid  5539
 Copyright terms: Public domain W3C validator