![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cdeqi | Unicode version |
Description: Deduce conditional equality. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
cdeqi.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
cdeqi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdeqi.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | df-cdeq 2800 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpbir 144 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 df-cdeq 2800 |
This theorem is referenced by: cdeqth 2803 cdeqnot 2804 cdeqal 2805 cdeqab 2806 cdeqim 2809 cdeqcv 2810 cdeqeq 2811 cdeqel 2812 |
Copyright terms: Public domain | W3C validator |