ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsalt Unicode version

Theorem ceqsalt 2597
Description: Closed theorem version of ceqsalg 2599. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
Assertion
Ref Expression
ceqsalt  |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  V )  ->  ( A. x ( x  =  A  ->  ph )  <->  ps )
)
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)    V( x)

Proof of Theorem ceqsalt
StepHypRef Expression
1 elisset 2585 . . . 4  |-  ( A  e.  V  ->  E. x  x  =  A )
213ad2ant3 938 . . 3  |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  V )  ->  E. x  x  =  A )
3 bi1 115 . . . . . . 7  |-  ( (
ph 
<->  ps )  ->  ( ph  ->  ps ) )
43imim3i 59 . . . . . 6  |-  ( ( x  =  A  -> 
( ph  <->  ps ) )  -> 
( ( x  =  A  ->  ph )  -> 
( x  =  A  ->  ps ) ) )
54al2imi 1363 . . . . 5  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  ( A. x ( x  =  A  ->  ph )  ->  A. x ( x  =  A  ->  ps )
) )
653ad2ant2 937 . . . 4  |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  V )  ->  ( A. x ( x  =  A  ->  ph )  ->  A. x ( x  =  A  ->  ps )
) )
7 19.23t 1583 . . . . 5  |-  ( F/ x ps  ->  ( A. x ( x  =  A  ->  ps )  <->  ( E. x  x  =  A  ->  ps )
) )
873ad2ant1 936 . . . 4  |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  V )  ->  ( A. x ( x  =  A  ->  ps )  <->  ( E. x  x  =  A  ->  ps )
) )
96, 8sylibd 142 . . 3  |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  V )  ->  ( A. x ( x  =  A  ->  ph )  -> 
( E. x  x  =  A  ->  ps ) ) )
102, 9mpid 41 . 2  |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  V )  ->  ( A. x ( x  =  A  ->  ph )  ->  ps ) )
11 bi2 125 . . . . . . 7  |-  ( (
ph 
<->  ps )  ->  ( ps  ->  ph ) )
1211imim2i 12 . . . . . 6  |-  ( ( x  =  A  -> 
( ph  <->  ps ) )  -> 
( x  =  A  ->  ( ps  ->  ph ) ) )
1312com23 76 . . . . 5  |-  ( ( x  =  A  -> 
( ph  <->  ps ) )  -> 
( ps  ->  (
x  =  A  ->  ph ) ) )
1413alimi 1360 . . . 4  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  A. x
( ps  ->  (
x  =  A  ->  ph ) ) )
15143ad2ant2 937 . . 3  |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  V )  ->  A. x
( ps  ->  (
x  =  A  ->  ph ) ) )
16 19.21t 1490 . . . 4  |-  ( F/ x ps  ->  ( A. x ( ps  ->  ( x  =  A  ->  ph ) )  <->  ( ps  ->  A. x ( x  =  A  ->  ph )
) ) )
17163ad2ant1 936 . . 3  |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  V )  ->  ( A. x ( ps  ->  ( x  =  A  ->  ph ) )  <->  ( ps  ->  A. x ( x  =  A  ->  ph )
) ) )
1815, 17mpbid 139 . 2  |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  V )  ->  ( ps  ->  A. x ( x  =  A  ->  ph )
) )
1910, 18impbid 124 1  |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  V )  ->  ( A. x ( x  =  A  ->  ph )  <->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 102    /\ w3a 896   A.wal 1257    = wceq 1259   F/wnf 1365   E.wex 1397    e. wcel 1409
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-3an 898  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-v 2576
This theorem is referenced by:  ceqsralt  2598
  Copyright terms: Public domain W3C validator