ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsralv Unicode version

Theorem ceqsralv 2602
Description: Restricted quantifier version of ceqsalv 2601. (Contributed by NM, 21-Jun-2013.)
Hypothesis
Ref Expression
ceqsralv.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ceqsralv  |-  ( A  e.  B  ->  ( A. x  e.  B  ( x  =  A  ->  ph )  <->  ps )
)
Distinct variable groups:    x, A    x, B    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem ceqsralv
StepHypRef Expression
1 nfv 1437 . 2  |-  F/ x ps
2 ceqsralv.2 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
32ax-gen 1354 . 2  |-  A. x
( x  =  A  ->  ( ph  <->  ps )
)
4 ceqsralt 2598 . 2  |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  B )  ->  ( A. x  e.  B  ( x  =  A  ->  ph )  <->  ps )
)
51, 3, 4mp3an12 1233 1  |-  ( A  e.  B  ->  ( A. x  e.  B  ( x  =  A  ->  ph )  <->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 102   A.wal 1257    = wceq 1259   F/wnf 1365    e. wcel 1409   A.wral 2323
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-3an 898  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-ral 2328  df-v 2576
This theorem is referenced by:  eqreu  2756  sqrt2irr  10251
  Copyright terms: Public domain W3C validator