ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cgsex2g Unicode version

Theorem cgsex2g 2696
Description: Implicit substitution inference for general classes. (Contributed by NM, 26-Jul-1995.)
Hypotheses
Ref Expression
cgsex2g.1  |-  ( ( x  =  A  /\  y  =  B )  ->  ch )
cgsex2g.2  |-  ( ch 
->  ( ph  <->  ps )
)
Assertion
Ref Expression
cgsex2g  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. x E. y ( ch  /\  ph )  <->  ps ) )
Distinct variable groups:    x, y, ps    x, A, y    x, B, y
Allowed substitution hints:    ph( x, y)    ch( x, y)    V( x, y)    W( x, y)

Proof of Theorem cgsex2g
StepHypRef Expression
1 cgsex2g.2 . . . 4  |-  ( ch 
->  ( ph  <->  ps )
)
21biimpa 294 . . 3  |-  ( ( ch  /\  ph )  ->  ps )
32exlimivv 1852 . 2  |-  ( E. x E. y ( ch  /\  ph )  ->  ps )
4 elisset 2674 . . . . . 6  |-  ( A  e.  V  ->  E. x  x  =  A )
5 elisset 2674 . . . . . 6  |-  ( B  e.  W  ->  E. y 
y  =  B )
64, 5anim12i 336 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. x  x  =  A  /\  E. y  y  =  B
) )
7 eeanv 1884 . . . . 5  |-  ( E. x E. y ( x  =  A  /\  y  =  B )  <->  ( E. x  x  =  A  /\  E. y 
y  =  B ) )
86, 7sylibr 133 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  E. x E. y
( x  =  A  /\  y  =  B ) )
9 cgsex2g.1 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  ch )
1092eximi 1565 . . . 4  |-  ( E. x E. y ( x  =  A  /\  y  =  B )  ->  E. x E. y ch )
118, 10syl 14 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  E. x E. y ch )
121biimprcd 159 . . . . 5  |-  ( ps 
->  ( ch  ->  ph )
)
1312ancld 323 . . . 4  |-  ( ps 
->  ( ch  ->  ( ch  /\  ph ) ) )
14132eximdv 1838 . . 3  |-  ( ps 
->  ( E. x E. y ch  ->  E. x E. y ( ch  /\  ph ) ) )
1511, 14syl5com 29 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ps  ->  E. x E. y ( ch  /\  ph ) ) )
163, 15impbid2 142 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. x E. y ( ch  /\  ph )  <->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1316   E.wex 1453    e. wcel 1465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-4 1472  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-ext 2099
This theorem depends on definitions:  df-bi 116  df-nf 1422  df-sb 1721  df-clab 2104  df-cleq 2110  df-clel 2113  df-v 2662
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator