ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  chfnrn Unicode version

Theorem chfnrn 5524
Description: The range of a choice function (a function that chooses an element from each member of its domain) is included in the union of its domain. (Contributed by NM, 31-Aug-1999.)
Assertion
Ref Expression
chfnrn  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  x )  ->  ran  F  C_  U. A )
Distinct variable groups:    x, A    x, F

Proof of Theorem chfnrn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fvelrnb 5462 . . . . 5  |-  ( F  Fn  A  ->  (
y  e.  ran  F  <->  E. x  e.  A  ( F `  x )  =  y ) )
21biimpd 143 . . . 4  |-  ( F  Fn  A  ->  (
y  e.  ran  F  ->  E. x  e.  A  ( F `  x )  =  y ) )
3 eleq1 2200 . . . . . . 7  |-  ( ( F `  x )  =  y  ->  (
( F `  x
)  e.  x  <->  y  e.  x ) )
43biimpcd 158 . . . . . 6  |-  ( ( F `  x )  e.  x  ->  (
( F `  x
)  =  y  -> 
y  e.  x ) )
54ralimi 2493 . . . . 5  |-  ( A. x  e.  A  ( F `  x )  e.  x  ->  A. x  e.  A  ( ( F `  x )  =  y  ->  y  e.  x ) )
6 rexim 2524 . . . . 5  |-  ( A. x  e.  A  (
( F `  x
)  =  y  -> 
y  e.  x )  ->  ( E. x  e.  A  ( F `  x )  =  y  ->  E. x  e.  A  y  e.  x )
)
75, 6syl 14 . . . 4  |-  ( A. x  e.  A  ( F `  x )  e.  x  ->  ( E. x  e.  A  ( F `  x )  =  y  ->  E. x  e.  A  y  e.  x ) )
82, 7sylan9 406 . . 3  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  x )  -> 
( y  e.  ran  F  ->  E. x  e.  A  y  e.  x )
)
9 eluni2 3735 . . 3  |-  ( y  e.  U. A  <->  E. x  e.  A  y  e.  x )
108, 9syl6ibr 161 . 2  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  x )  -> 
( y  e.  ran  F  ->  y  e.  U. A ) )
1110ssrdv 3098 1  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  x )  ->  ran  F  C_  U. A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   A.wral 2414   E.wrex 2415    C_ wss 3066   U.cuni 3731   ran crn 4535    Fn wfn 5113   ` cfv 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-sbc 2905  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-iota 5083  df-fun 5120  df-fn 5121  df-fv 5126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator