ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cleqf Unicode version

Theorem cleqf 2303
Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions. See also cleqh 2237. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
cleqf.1  |-  F/_ x A
cleqf.2  |-  F/_ x B
Assertion
Ref Expression
cleqf  |-  ( A  =  B  <->  A. x
( x  e.  A  <->  x  e.  B ) )

Proof of Theorem cleqf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2131 . 2  |-  ( A  =  B  <->  A. y
( y  e.  A  <->  y  e.  B ) )
2 nfv 1508 . . 3  |-  F/ y ( x  e.  A  <->  x  e.  B )
3 cleqf.1 . . . . 5  |-  F/_ x A
43nfcri 2273 . . . 4  |-  F/ x  y  e.  A
5 cleqf.2 . . . . 5  |-  F/_ x B
65nfcri 2273 . . . 4  |-  F/ x  y  e.  B
74, 6nfbi 1568 . . 3  |-  F/ x
( y  e.  A  <->  y  e.  B )
8 eleq1 2200 . . . 4  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
9 eleq1 2200 . . . 4  |-  ( x  =  y  ->  (
x  e.  B  <->  y  e.  B ) )
108, 9bibi12d 234 . . 3  |-  ( x  =  y  ->  (
( x  e.  A  <->  x  e.  B )  <->  ( y  e.  A  <->  y  e.  B
) ) )
112, 7, 10cbval 1727 . 2  |-  ( A. x ( x  e.  A  <->  x  e.  B
)  <->  A. y ( y  e.  A  <->  y  e.  B ) )
121, 11bitr4i 186 1  |-  ( A  =  B  <->  A. x
( x  e.  A  <->  x  e.  B ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   A.wal 1329    = wceq 1331    e. wcel 1480   F/_wnfc 2266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-cleq 2130  df-clel 2133  df-nfc 2268
This theorem is referenced by:  abid2f  2304  n0rf  3370  eq0  3376  iunab  3854  iinab  3869  sniota  5110
  Copyright terms: Public domain W3C validator