ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcau Unicode version

Theorem climcau 10311
Description: A converging sequence of complex numbers is a Cauchy sequence. The converse would require excluded middle or a different definition of Cauchy sequence (for example, fixing a rate of convergence as in climcvg1n 10314). Theorem 12-5.3 of [Gleason] p. 180 (necessity part). (Contributed by NM, 16-Apr-2005.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypothesis
Ref Expression
climcau.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
climcau  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )
Distinct variable groups:    j, k, x, F    j, M, k, x    j, Z, k, x

Proof of Theorem climcau
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eldm2g 4553 . . . 4  |-  ( F  e.  dom  ~~>  ->  ( F  e.  dom  ~~>  <->  E. y <. F ,  y >.  e. 
~~>  ) )
21ibi 174 . . 3  |-  ( F  e.  dom  ~~>  ->  E. y <. F ,  y >.  e. 
~~>  )
3 df-br 3788 . . . . 5  |-  ( F  ~~>  y  <->  <. F ,  y
>.  e.  ~~>  )
4 climcau.1 . . . . . . . . 9  |-  Z  =  ( ZZ>= `  M )
5 simpll 496 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  ->  M  e.  ZZ )
6 rphalfcl 8831 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( x  /  2 )  e.  RR+ )
76adantl 271 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  -> 
( x  /  2
)  e.  RR+ )
8 eqidd 2083 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  k  e.  Z
)  ->  ( F `  k )  =  ( F `  k ) )
9 simplr 497 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  ->  F 
~~>  y )
104, 5, 7, 8, 9climi 10253 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  y ) )  <  ( x  / 
2 ) ) )
11 eluzelz 8698 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
12 uzid 8703 . . . . . . . . . . . . . 14  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
1311, 12syl 14 . . . . . . . . . . . . 13  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ( ZZ>= `  j )
)
1413, 4eleq2s 2174 . . . . . . . . . . . 12  |-  ( j  e.  Z  ->  j  e.  ( ZZ>= `  j )
)
1514adantl 271 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  j  e.  ( ZZ>= `  j )
)
16 fveq2 5203 . . . . . . . . . . . . . 14  |-  ( k  =  j  ->  ( F `  k )  =  ( F `  j ) )
1716eleq1d 2148 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  (
( F `  k
)  e.  CC  <->  ( F `  j )  e.  CC ) )
1816oveq1d 5552 . . . . . . . . . . . . . . 15  |-  ( k  =  j  ->  (
( F `  k
)  -  y )  =  ( ( F `
 j )  -  y ) )
1918fveq2d 5207 . . . . . . . . . . . . . 14  |-  ( k  =  j  ->  ( abs `  ( ( F `
 k )  -  y ) )  =  ( abs `  (
( F `  j
)  -  y ) ) )
2019breq1d 3797 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  (
( abs `  (
( F `  k
)  -  y ) )  <  ( x  /  2 )  <->  ( abs `  ( ( F `  j )  -  y
) )  <  (
x  /  2 ) ) )
2117, 20anbi12d 457 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  y ) )  <  ( x  /  2 ) )  <-> 
( ( F `  j )  e.  CC  /\  ( abs `  (
( F `  j
)  -  y ) )  <  ( x  /  2 ) ) ) )
2221rspcv 2698 . . . . . . . . . . 11  |-  ( j  e.  ( ZZ>= `  j
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  y ) )  < 
( x  /  2
) )  ->  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) ) )
2315, 22syl 14 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  y ) )  < 
( x  /  2
) )  ->  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) ) )
24 rpre 8810 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  x  e.  RR )
2524ad2antlr 473 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  x  e.  RR )
26 simpllr 501 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  F  ~~>  y )
27 climcl 10248 . . . . . . . . . . . 12  |-  ( F  ~~>  y  ->  y  e.  CC )
2826, 27syl 14 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  y  e.  CC )
29 simprl 498 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( F `  k )  e.  CC )
30 simplrl 502 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( F `  j )  e.  CC )
31 simpllr 501 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  y  e.  CC )
32 simplll 500 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  x  e.  RR )
33 simprr 499 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( abs `  ( ( F `
 k )  -  y ) )  < 
( x  /  2
) )
3431, 30abssubd 10206 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( abs `  ( y  -  ( F `  j ) ) )  =  ( abs `  ( ( F `  j )  -  y ) ) )
35 simplrr 503 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( abs `  ( ( F `
 j )  -  y ) )  < 
( x  /  2
) )
3634, 35eqbrtrd 3807 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( abs `  ( y  -  ( F `  j ) ) )  <  (
x  /  2 ) )
3729, 30, 31, 32, 33, 36abs3lemd 10214 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  RR  /\  y  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  ( abs `  ( ( F `  j )  -  y ) )  <  ( x  / 
2 ) ) )  /\  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
)
3837ex 113 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  RR  /\  y  e.  CC )  /\  ( ( F `
 j )  e.  CC  /\  ( abs `  ( ( F `  j )  -  y
) )  <  (
x  /  2 ) ) )  ->  (
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  y ) )  <  ( x  /  2 ) )  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
3938ralimdv 2431 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  RR  /\  y  e.  CC )  /\  ( ( F `
 j )  e.  CC  /\  ( abs `  ( ( F `  j )  -  y
) )  <  (
x  /  2 ) ) )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  y ) )  <  ( x  / 
2 ) )  ->  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
4039ex 113 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  y  e.  CC )  ->  ( ( ( F `
 j )  e.  CC  /\  ( abs `  ( ( F `  j )  -  y
) )  <  (
x  /  2 ) )  ->  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  y ) )  < 
( x  /  2
) )  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) )
4140com23 77 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  y  e.  CC )  ->  ( A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  y ) )  <  ( x  /  2 ) )  ->  ( ( ( F `  j )  e.  CC  /\  ( abs `  ( ( F `
 j )  -  y ) )  < 
( x  /  2
) )  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) )
4225, 28, 41syl2anc 403 . . . . . . . . . 10  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  y ) )  < 
( x  /  2
) )  ->  (
( ( F `  j )  e.  CC  /\  ( abs `  (
( F `  j
)  -  y ) )  <  ( x  /  2 ) )  ->  A. k  e.  (
ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) ) )
4323, 42mpdd 40 . . . . . . . . 9  |-  ( ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  /\  j  e.  Z
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  y ) )  < 
( x  /  2
) )  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
4443reximdva 2464 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  -> 
( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  y ) )  <  ( x  /  2 ) )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
4510, 44mpd 13 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  F  ~~>  y )  /\  x  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )
4645ralrimiva 2435 . . . . . 6  |-  ( ( M  e.  ZZ  /\  F 
~~>  y )  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )
4746ex 113 . . . . 5  |-  ( M  e.  ZZ  ->  ( F 
~~>  y  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
483, 47syl5bir 151 . . . 4  |-  ( M  e.  ZZ  ->  ( <. F ,  y >.  e. 
~~>  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
) )
4948exlimdv 1741 . . 3  |-  ( M  e.  ZZ  ->  ( E. y <. F ,  y
>.  e.  ~~>  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
) )
502, 49syl5 32 . 2  |-  ( M  e.  ZZ  ->  ( F  e.  dom  ~~>  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
5150imp 122 1  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285   E.wex 1422    e. wcel 1434   A.wral 2349   E.wrex 2350   <.cop 3403   class class class wbr 3787   dom cdm 4365   ` cfv 4926  (class class class)co 5537   CCcc 7030   RRcr 7031    < clt 7204    - cmin 7335    / cdiv 7816   2c2 8145   ZZcz 8421   ZZ>=cuz 8689   RR+crp 8804   abscabs 10010    ~~> cli 10244
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3895  ax-sep 3898  ax-nul 3906  ax-pow 3950  ax-pr 3966  ax-un 4190  ax-setind 4282  ax-iinf 4331  ax-cnex 7118  ax-resscn 7119  ax-1cn 7120  ax-1re 7121  ax-icn 7122  ax-addcl 7123  ax-addrcl 7124  ax-mulcl 7125  ax-mulrcl 7126  ax-addcom 7127  ax-mulcom 7128  ax-addass 7129  ax-mulass 7130  ax-distr 7131  ax-i2m1 7132  ax-0lt1 7133  ax-1rid 7134  ax-0id 7135  ax-rnegex 7136  ax-precex 7137  ax-cnre 7138  ax-pre-ltirr 7139  ax-pre-ltwlin 7140  ax-pre-lttrn 7141  ax-pre-apti 7142  ax-pre-ltadd 7143  ax-pre-mulgt0 7144  ax-pre-mulext 7145  ax-arch 7146  ax-caucvg 7147
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rmo 2357  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3253  df-if 3354  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-int 3639  df-iun 3682  df-br 3788  df-opab 3842  df-mpt 3843  df-tr 3878  df-id 4050  df-po 4053  df-iso 4054  df-iord 4123  df-on 4125  df-ilim 4126  df-suc 4128  df-iom 4334  df-xp 4371  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-rn 4376  df-res 4377  df-ima 4378  df-iota 4891  df-fun 4928  df-fn 4929  df-f 4930  df-f1 4931  df-fo 4932  df-f1o 4933  df-fv 4934  df-riota 5493  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-1st 5792  df-2nd 5793  df-recs 5948  df-frec 6034  df-pnf 7206  df-mnf 7207  df-xr 7208  df-ltxr 7209  df-le 7210  df-sub 7337  df-neg 7338  df-reap 7731  df-ap 7738  df-div 7817  df-inn 8096  df-2 8154  df-3 8155  df-4 8156  df-n0 8345  df-z 8422  df-uz 8690  df-rp 8805  df-iseq 9511  df-iexp 9562  df-cj 9856  df-re 9857  df-im 9858  df-rsqrt 10011  df-abs 10012  df-clim 10245
This theorem is referenced by:  climcaucn  10315
  Copyright terms: Public domain W3C validator