ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climconst Unicode version

Theorem climconst 11052
Description: An (eventually) constant sequence converges to its value. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climconst.1  |-  Z  =  ( ZZ>= `  M )
climconst.2  |-  ( ph  ->  M  e.  ZZ )
climconst.3  |-  ( ph  ->  F  e.  V )
climconst.4  |-  ( ph  ->  A  e.  CC )
climconst.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
Assertion
Ref Expression
climconst  |-  ( ph  ->  F  ~~>  A )
Distinct variable groups:    A, k    k, F    ph, k    k, Z
Allowed substitution hints:    M( k)    V( k)

Proof of Theorem climconst
Dummy variables  j  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climconst.2 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
2 uzid 9333 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
31, 2syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
4 climconst.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
53, 4eleqtrrdi 2231 . . . . 5  |-  ( ph  ->  M  e.  Z )
65adantr 274 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  M  e.  Z )
7 climconst.4 . . . . . . . . . 10  |-  ( ph  ->  A  e.  CC )
87subidd 8054 . . . . . . . . 9  |-  ( ph  ->  ( A  -  A
)  =  0 )
98fveq2d 5418 . . . . . . . 8  |-  ( ph  ->  ( abs `  ( A  -  A )
)  =  ( abs `  0 ) )
10 abs0 10823 . . . . . . . 8  |-  ( abs `  0 )  =  0
119, 10syl6eq 2186 . . . . . . 7  |-  ( ph  ->  ( abs `  ( A  -  A )
)  =  0 )
1211adantr 274 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs `  ( A  -  A
) )  =  0 )
13 rpgt0 9446 . . . . . . 7  |-  ( x  e.  RR+  ->  0  < 
x )
1413adantl 275 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  0  <  x )
1512, 14eqbrtrd 3945 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( abs `  ( A  -  A
) )  <  x
)
1615ralrimivw 2504 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  A. k  e.  Z  ( abs `  ( A  -  A
) )  <  x
)
17 fveq2 5414 . . . . . . 7  |-  ( j  =  M  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  M )
)
1817, 4syl6eqr 2188 . . . . . 6  |-  ( j  =  M  ->  ( ZZ>=
`  j )  =  Z )
1918raleqdv 2630 . . . . 5  |-  ( j  =  M  ->  ( A. k  e.  ( ZZ>=
`  j ) ( abs `  ( A  -  A ) )  <  x  <->  A. k  e.  Z  ( abs `  ( A  -  A
) )  <  x
) )
2019rspcev 2784 . . . 4  |-  ( ( M  e.  Z  /\  A. k  e.  Z  ( abs `  ( A  -  A ) )  <  x )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( A  -  A ) )  <  x )
216, 16, 20syl2anc 408 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( A  -  A )
)  <  x )
2221ralrimiva 2503 . 2  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( A  -  A
) )  <  x
)
23 climconst.3 . . 3  |-  ( ph  ->  F  e.  V )
24 climconst.5 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
257adantr 274 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
264, 1, 23, 24, 7, 25clim2c 11046 . 2  |-  ( ph  ->  ( F  ~~>  A  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( A  -  A )
)  <  x )
)
2722, 26mpbird 166 1  |-  ( ph  ->  F  ~~>  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   A.wral 2414   E.wrex 2415   class class class wbr 3924   ` cfv 5118  (class class class)co 5767   CCcc 7611   0cc0 7613    < clt 7793    - cmin 7926   ZZcz 9047   ZZ>=cuz 9319   RR+crp 9434   abscabs 10762    ~~> cli 11040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-n0 8971  df-z 9048  df-uz 9320  df-rp 9435  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-rsqrt 10763  df-abs 10764  df-clim 11041
This theorem is referenced by:  climconst2  11053  fsum3cvg  11139  fproddccvg  11334
  Copyright terms: Public domain W3C validator