ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climeq Unicode version

Theorem climeq 10339
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Mario Carneiro, 5-Nov-2013.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climeq.1  |-  Z  =  ( ZZ>= `  M )
climeq.2  |-  ( ph  ->  F  e.  V )
climeq.3  |-  ( ph  ->  G  e.  W )
climeq.5  |-  ( ph  ->  M  e.  ZZ )
climeq.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( G `  k ) )
Assertion
Ref Expression
climeq  |-  ( ph  ->  ( F  ~~>  A  <->  G  ~~>  A ) )
Distinct variable groups:    A, k    k, F    k, G    ph, k    k, Z
Allowed substitution hints:    M( k)    V( k)    W( k)

Proof of Theorem climeq
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climeq.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 climeq.5 . . 3  |-  ( ph  ->  M  e.  ZZ )
3 climeq.2 . . 3  |-  ( ph  ->  F  e.  V )
4 climeq.6 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( G `  k ) )
51, 2, 3, 4clim2 10323 . 2  |-  ( ph  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. y  e.  Z  A. k  e.  ( ZZ>= `  y )
( ( G `  k )  e.  CC  /\  ( abs `  (
( G `  k
)  -  A ) )  <  x ) ) ) )
6 climeq.3 . . 3  |-  ( ph  ->  G  e.  W )
7 eqidd 2084 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( G `  k ) )
81, 2, 6, 7clim2 10323 . 2  |-  ( ph  ->  ( G  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. y  e.  Z  A. k  e.  ( ZZ>= `  y )
( ( G `  k )  e.  CC  /\  ( abs `  (
( G `  k
)  -  A ) )  <  x ) ) ) )
95, 8bitr4d 189 1  |-  ( ph  ->  ( F  ~~>  A  <->  G  ~~>  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434   A.wral 2353   E.wrex 2354   class class class wbr 3805   ` cfv 4952  (class class class)co 5563   CCcc 7093    < clt 7267    - cmin 7398   ZZcz 8484   ZZ>=cuz 8752   RR+crp 8867   abscabs 10084    ~~> cli 10318
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-addcom 7190  ax-addass 7192  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-0id 7198  ax-rnegex 7199  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-apti 7205  ax-pre-ltadd 7206
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-if 3369  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-br 3806  df-opab 3860  df-mpt 3861  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-inn 8159  df-n0 8408  df-z 8485  df-uz 8753  df-clim 10319
This theorem is referenced by:  climmpt  10340  climres  10343  climshft  10344  climshft2  10346
  Copyright terms: Public domain W3C validator