ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climrecvg1n Unicode version

Theorem climrecvg1n 10323
Description: A Cauchy sequence of real numbers converges, existence version. The rate of convergence is fixed: all terms after the nth term must be within  C  /  n of the nth term, where  C is a constant multiplier. (Contributed by Jim Kingdon, 23-Aug-2021.)
Hypotheses
Ref Expression
climrecvg1n.f  |-  ( ph  ->  F : NN --> RR )
climrecvg1n.c  |-  ( ph  ->  C  e.  RR+ )
climrecvg1n.cau  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n ) )
Assertion
Ref Expression
climrecvg1n  |-  ( ph  ->  F  e.  dom  ~~>  )
Distinct variable groups:    C, k, n   
k, F, n    ph, k, n

Proof of Theorem climrecvg1n
Dummy variables  e  i  j  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrecvg1n.f . . 3  |-  ( ph  ->  F : NN --> RR )
2 climrecvg1n.c . . 3  |-  ( ph  ->  C  e.  RR+ )
3 climrecvg1n.cau . . . . . . . . 9  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n ) )
43r19.21bi 2450 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  A. k  e.  ( ZZ>= `  n )
( abs `  (
( F `  k
)  -  ( F `
 n ) ) )  <  ( C  /  n ) )
54r19.21bi 2450 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( abs `  ( ( F `  k )  -  ( F `  n )
) )  <  ( C  /  n ) )
61ad2antrr 472 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  F : NN
--> RR )
7 eluznn 8768 . . . . . . . . . 10  |-  ( ( n  e.  NN  /\  k  e.  ( ZZ>= `  n ) )  -> 
k  e.  NN )
87adantll 460 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  k  e.  NN )
96, 8ffvelrnd 5335 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  k )  e.  RR )
10 simplr 497 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  NN )
116, 10ffvelrnd 5335 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  n )  e.  RR )
122ad2antrr 472 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  C  e.  RR+ )
1310nnrpd 8853 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  RR+ )
1412, 13rpdivcld 8872 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( C  /  n )  e.  RR+ )
1514rpred 8854 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( C  /  n )  e.  RR )
169, 11, 15absdifltd 10202 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( abs `  ( ( F `
 k )  -  ( F `  n ) ) )  <  ( C  /  n )  <->  ( (
( F `  n
)  -  ( C  /  n ) )  <  ( F `  k )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) ) ) )
175, 16mpbid 145 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( F `  n
)  -  ( C  /  n ) )  <  ( F `  k )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) ) )
1811, 15, 9ltsubaddd 7708 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( F `  n
)  -  ( C  /  n ) )  <  ( F `  k )  <->  ( F `  n )  <  (
( F `  k
)  +  ( C  /  n ) ) ) )
1918anbi1d 453 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ( F `  n )  -  ( C  /  n ) )  <  ( F `  k )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) )  <->  ( ( F `  n )  <  ( ( F `  k )  +  ( C  /  n ) )  /\  ( F `
 k )  < 
( ( F `  n )  +  ( C  /  n ) ) ) ) )
2017, 19mpbid 145 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  n )  <  ( ( F `  k )  +  ( C  /  n ) )  /\  ( F `
 k )  < 
( ( F `  n )  +  ( C  /  n ) ) ) )
2120ralrimiva 2435 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  A. k  e.  ( ZZ>= `  n )
( ( F `  n )  <  (
( F `  k
)  +  ( C  /  n ) )  /\  ( F `  k )  <  (
( F `  n
)  +  ( C  /  n ) ) ) )
2221ralrimiva 2435 . . 3  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( C  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) ) )
231, 2, 22cvg1n 10010 . 2  |-  ( ph  ->  E. y  e.  RR  A. e  e.  RR+  E. i  e.  NN  A. j  e.  ( ZZ>= `  i )
( ( F `  j )  <  (
y  +  e )  /\  y  <  (
( F `  j
)  +  e ) ) )
241adantr 270 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  RR )  ->  F : NN
--> RR )
2524ad3antrrr 476 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  F : NN --> RR )
26 eluznn 8768 . . . . . . . . . . . 12  |-  ( ( i  e.  NN  /\  j  e.  ( ZZ>= `  i ) )  -> 
j  e.  NN )
2726adantll 460 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  j  e.  NN )
2825, 27ffvelrnd 5335 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  ( F `  j )  e.  RR )
29 simpr 108 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  RR )  ->  y  e.  RR )
3029ad3antrrr 476 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  y  e.  RR )
31 simpllr 501 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  e  e.  RR+ )
3231rpred 8854 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  e  e.  RR )
3328, 30, 32absdifltd 10202 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  ( ( abs `  ( ( F `  j )  -  y
) )  <  e  <->  ( ( y  -  e
)  <  ( F `  j )  /\  ( F `  j )  <  ( y  +  e ) ) ) )
3430, 32, 28ltsubaddd 7708 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  ( ( y  -  e )  < 
( F `  j
)  <->  y  <  (
( F `  j
)  +  e ) ) )
3534anbi1d 453 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  ( ( ( y  -  e )  <  ( F `  j )  /\  ( F `  j )  <  ( y  +  e ) )  <->  ( y  <  ( ( F `  j )  +  e )  /\  ( F `
 j )  < 
( y  +  e ) ) ) )
3633, 35bitrd 186 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  ( ( abs `  ( ( F `  j )  -  y
) )  <  e  <->  ( y  <  ( ( F `  j )  +  e )  /\  ( F `  j )  <  ( y  +  e ) ) ) )
37 ancom 262 . . . . . . . 8  |-  ( ( y  <  ( ( F `  j )  +  e )  /\  ( F `  j )  <  ( y  +  e ) )  <->  ( ( F `  j )  <  ( y  +  e )  /\  y  < 
( ( F `  j )  +  e ) ) )
3836, 37syl6bb 194 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  /\  j  e.  (
ZZ>= `  i ) )  ->  ( ( abs `  ( ( F `  j )  -  y
) )  <  e  <->  ( ( F `  j
)  <  ( y  +  e )  /\  y  <  ( ( F `
 j )  +  e ) ) ) )
3938ralbidva 2365 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  /\  i  e.  NN )  ->  ( A. j  e.  ( ZZ>= `  i )
( abs `  (
( F `  j
)  -  y ) )  <  e  <->  A. j  e.  ( ZZ>= `  i )
( ( F `  j )  <  (
y  +  e )  /\  y  <  (
( F `  j
)  +  e ) ) ) )
4039rexbidva 2366 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR )  /\  e  e.  RR+ )  ->  ( E. i  e.  NN  A. j  e.  ( ZZ>= `  i ) ( abs `  ( ( F `  j )  -  y
) )  <  e  <->  E. i  e.  NN  A. j  e.  ( ZZ>= `  i ) ( ( F `  j )  <  ( y  +  e )  /\  y  <  ( ( F `  j )  +  e ) ) ) )
4140ralbidva 2365 . . . 4  |-  ( (
ph  /\  y  e.  RR )  ->  ( A. e  e.  RR+  E. i  e.  NN  A. j  e.  ( ZZ>= `  i )
( abs `  (
( F `  j
)  -  y ) )  <  e  <->  A. e  e.  RR+  E. i  e.  NN  A. j  e.  ( ZZ>= `  i )
( ( F `  j )  <  (
y  +  e )  /\  y  <  (
( F `  j
)  +  e ) ) ) )
42 nnuz 8735 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
43 1zzd 8459 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  1  e.  ZZ )
44 nnex 8112 . . . . . . . 8  |-  NN  e.  _V
4544a1i 9 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  NN  e.  _V )
46 reex 7169 . . . . . . . 8  |-  RR  e.  _V
4746a1i 9 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR )  ->  RR  e.  _V )
48 fex2 5090 . . . . . . 7  |-  ( ( F : NN --> RR  /\  NN  e.  _V  /\  RR  e.  _V )  ->  F  e.  _V )
4924, 45, 47, 48syl3anc 1170 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  F  e. 
_V )
50 eqidd 2083 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR )  /\  j  e.  NN )  ->  ( F `  j )  =  ( F `  j ) )
5129recnd 7209 . . . . . 6  |-  ( (
ph  /\  y  e.  RR )  ->  y  e.  CC )
5224ffvelrnda 5334 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR )  /\  j  e.  NN )  ->  ( F `  j )  e.  RR )
5352recnd 7209 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR )  /\  j  e.  NN )  ->  ( F `  j )  e.  CC )
5442, 43, 49, 50, 51, 53clim2c 10261 . . . . 5  |-  ( (
ph  /\  y  e.  RR )  ->  ( F  ~~>  y  <->  A. e  e.  RR+  E. i  e.  NN  A. j  e.  ( ZZ>= `  i ) ( abs `  ( ( F `  j )  -  y
) )  <  e
) )
55 climrel 10257 . . . . . 6  |-  Rel  ~~>
5655releldmi 4601 . . . . 5  |-  ( F  ~~>  y  ->  F  e.  dom 
~~>  )
5754, 56syl6bir 162 . . . 4  |-  ( (
ph  /\  y  e.  RR )  ->  ( A. e  e.  RR+  E. i  e.  NN  A. j  e.  ( ZZ>= `  i )
( abs `  (
( F `  j
)  -  y ) )  <  e  ->  F  e.  dom  ~~>  ) )
5841, 57sylbird 168 . . 3  |-  ( (
ph  /\  y  e.  RR )  ->  ( A. e  e.  RR+  E. i  e.  NN  A. j  e.  ( ZZ>= `  i )
( ( F `  j )  <  (
y  +  e )  /\  y  <  (
( F `  j
)  +  e ) )  ->  F  e.  dom 
~~>  ) )
5958impr 371 . 2  |-  ( (
ph  /\  ( y  e.  RR  /\  A. e  e.  RR+  E. i  e.  NN  A. j  e.  ( ZZ>= `  i )
( ( F `  j )  <  (
y  +  e )  /\  y  <  (
( F `  j
)  +  e ) ) ) )  ->  F  e.  dom  ~~>  )
6023, 59rexlimddv 2482 1  |-  ( ph  ->  F  e.  dom  ~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    e. wcel 1434   A.wral 2349   E.wrex 2350   _Vcvv 2602   class class class wbr 3793   dom cdm 4371   -->wf 4928   ` cfv 4932  (class class class)co 5543   RRcr 7042   1c1 7044    + caddc 7046    < clt 7215    - cmin 7346    / cdiv 7827   NNcn 8106   ZZ>=cuz 8700   RR+crp 8815   abscabs 10021    ~~> cli 10255
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-mulrcl 7137  ax-addcom 7138  ax-mulcom 7139  ax-addass 7140  ax-mulass 7141  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-1rid 7145  ax-0id 7146  ax-rnegex 7147  ax-precex 7148  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-apti 7153  ax-pre-ltadd 7154  ax-pre-mulgt0 7155  ax-pre-mulext 7156  ax-arch 7157  ax-caucvg 7158
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rmo 2357  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-if 3360  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-id 4056  df-po 4059  df-iso 4060  df-iord 4129  df-on 4131  df-ilim 4132  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-frec 6040  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-reap 7742  df-ap 7749  df-div 7828  df-inn 8107  df-2 8165  df-3 8166  df-4 8167  df-n0 8356  df-z 8433  df-uz 8701  df-rp 8816  df-iseq 9522  df-iexp 9573  df-cj 9867  df-re 9868  df-im 9869  df-rsqrt 10022  df-abs 10023  df-clim 10256
This theorem is referenced by:  climcvg1nlem  10324
  Copyright terms: Public domain W3C validator