ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climshft2 Unicode version

Theorem climshft2 11075
Description: A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007.) (Revised by Mario Carneiro, 6-Feb-2014.)
Hypotheses
Ref Expression
climshft2.1  |-  Z  =  ( ZZ>= `  M )
climshft2.2  |-  ( ph  ->  M  e.  ZZ )
climshft2.3  |-  ( ph  ->  K  e.  ZZ )
climshft2.5  |-  ( ph  ->  F  e.  W )
climshft2.6  |-  ( ph  ->  G  e.  X )
climshft2.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  ( k  +  K ) )  =  ( F `  k
) )
Assertion
Ref Expression
climshft2  |-  ( ph  ->  ( F  ~~>  A  <->  G  ~~>  A ) )
Distinct variable groups:    k, F    k, G    k, K    k, M    ph, k    k, Z    A, k
Allowed substitution hints:    W( k)    X( k)

Proof of Theorem climshft2
StepHypRef Expression
1 climshft2.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 climshft2.6 . . . 4  |-  ( ph  ->  G  e.  X )
3 climshft2.3 . . . . . 6  |-  ( ph  ->  K  e.  ZZ )
43zcnd 9174 . . . . 5  |-  ( ph  ->  K  e.  CC )
54negcld 8060 . . . 4  |-  ( ph  -> 
-u K  e.  CC )
6 ovshftex 10591 . . . 4  |-  ( ( G  e.  X  /\  -u K  e.  CC )  ->  ( G  shift  -u K )  e.  _V )
72, 5, 6syl2anc 408 . . 3  |-  ( ph  ->  ( G  shift  -u K
)  e.  _V )
8 climshft2.5 . . 3  |-  ( ph  ->  F  e.  W )
9 climshft2.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
10 funi 5155 . . . . . . . 8  |-  Fun  _I
11 elex 2697 . . . . . . . . . 10  |-  ( G  e.  X  ->  G  e.  _V )
122, 11syl 14 . . . . . . . . 9  |-  ( ph  ->  G  e.  _V )
13 dmi 4754 . . . . . . . . 9  |-  dom  _I  =  _V
1412, 13eleqtrrdi 2233 . . . . . . . 8  |-  ( ph  ->  G  e.  dom  _I  )
15 funfvex 5438 . . . . . . . 8  |-  ( ( Fun  _I  /\  G  e.  dom  _I  )  -> 
(  _I  `  G
)  e.  _V )
1610, 14, 15sylancr 410 . . . . . . 7  |-  ( ph  ->  (  _I  `  G
)  e.  _V )
1716adantr 274 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  (  _I  `  G )  e. 
_V )
184adantr 274 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  K  e.  CC )
19 eluzelz 9335 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
2019, 1eleq2s 2234 . . . . . . . 8  |-  ( k  e.  Z  ->  k  e.  ZZ )
2120zcnd 9174 . . . . . . 7  |-  ( k  e.  Z  ->  k  e.  CC )
2221adantl 275 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  CC )
23 shftval4g 10609 . . . . . 6  |-  ( ( (  _I  `  G
)  e.  _V  /\  K  e.  CC  /\  k  e.  CC )  ->  (
( (  _I  `  G )  shift  -u K
) `  k )  =  ( (  _I 
`  G ) `  ( K  +  k
) ) )
2417, 18, 22, 23syl3anc 1216 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  (
( (  _I  `  G )  shift  -u K
) `  k )  =  ( (  _I 
`  G ) `  ( K  +  k
) ) )
25 fvi 5478 . . . . . . . . 9  |-  ( G  e.  X  ->  (  _I  `  G )  =  G )
262, 25syl 14 . . . . . . . 8  |-  ( ph  ->  (  _I  `  G
)  =  G )
2726adantr 274 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  (  _I  `  G )  =  G )
2827oveq1d 5789 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  (
(  _I  `  G
)  shift  -u K )  =  ( G  shift  -u K
) )
2928fveq1d 5423 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  (
( (  _I  `  G )  shift  -u K
) `  k )  =  ( ( G 
shift  -u K ) `  k ) )
30 addcom 7899 . . . . . . 7  |-  ( ( K  e.  CC  /\  k  e.  CC )  ->  ( K  +  k )  =  ( k  +  K ) )
314, 21, 30syl2an 287 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( K  +  k )  =  ( k  +  K ) )
3227, 31fveq12d 5428 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  (
(  _I  `  G
) `  ( K  +  k ) )  =  ( G `  ( k  +  K
) ) )
3324, 29, 323eqtr3d 2180 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  (
( G  shift  -u K
) `  k )  =  ( G `  ( k  +  K
) ) )
34 climshft2.7 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  ( k  +  K ) )  =  ( F `  k
) )
3533, 34eqtrd 2172 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( G  shift  -u K
) `  k )  =  ( F `  k ) )
361, 7, 8, 9, 35climeq 11068 . 2  |-  ( ph  ->  ( ( G  shift  -u K )  ~~>  A  <->  F  ~~>  A ) )
373znegcld 9175 . . 3  |-  ( ph  -> 
-u K  e.  ZZ )
38 climshft 11073 . . 3  |-  ( (
-u K  e.  ZZ  /\  G  e.  X )  ->  ( ( G 
shift  -u K )  ~~>  A  <->  G  ~~>  A ) )
3937, 2, 38syl2anc 408 . 2  |-  ( ph  ->  ( ( G  shift  -u K )  ~~>  A  <->  G  ~~>  A ) )
4036, 39bitr3d 189 1  |-  ( ph  ->  ( F  ~~>  A  <->  G  ~~>  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   _Vcvv 2686   class class class wbr 3929    _I cid 4210   dom cdm 4539   Fun wfun 5117   ` cfv 5123  (class class class)co 5774   CCcc 7618    + caddc 7623   -ucneg 7934   ZZcz 9054   ZZ>=cuz 9326    shift cshi 10586    ~~> cli 11047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-shft 10587  df-clim 11048
This theorem is referenced by:  trireciplem  11269
  Copyright terms: Public domain W3C validator